Creating a Prosthetic Hand That Can Feel

DARPA’s HAPTIX program aims to develop a prosthetic hand that’s just as capable as the original

11 min read
Photo of plugged-in prosthetic hand holding a child's hand.
Mike McGregor

Wearing a blindfold and noise-canceling headphones, Igor Spetic gropes for the bowl in front of him, reaches into it, and picks up a cherry by its stem. He uses his left hand, which is his own flesh and blood. His right hand, though, is a plastic and metal prosthetic, the consequence of an industrial accident. Spetic is a volunteer in our research at the Louis Stokes Cleveland Veterans Affairs Medical Center, and he has been using this “myoelectric” device for years, controlling it by flexing the muscles in his right arm. The prosthetic, typical of those used by amputees, provides only crude control. As we watch, Spetic grabs the cherry between his prosthetic thumb and forefinger so that he can pull off the stem. Instead, the fruit bursts between his fingers.

Keep reading...Show less
{"imageShortcodeIds":[]}

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

Here’s How Apptronik Is Making Their Humanoid Robot

Is now the right time for useful, affordable, general-purpose humanoids?

4 min read
Three men stand in a robotics laboratory around a small white upper body humanoid robot on a pedestal

Apptronik co-founders Dr. Nick Paine, Jeff Cardenas and Bill Helmsing pictured with their humanoid upper body, Astra.

Apptronik, a Texas-based robotics company with its roots in the Human Centered Robotics Lab at University of Texas at Austin, has spent the last few years working towards a practical, general purpose humanoid robot. By designing their robot (called Apollo) completely from the ground up, including electronics and actuators, Apptronik is hoping that they’ll be able to deliver something affordable, reliable, and broadly useful. But at the moment, the most successful robots are not generalized systems—they’re uni-taskers, robots that can do one specific task very well but more or less nothing else. A general purpose robot, especially one in a human form factor, would have enormous potential. But the challenge is enormous, too.

So why does Apptronik believe that they have the answer to general purpose humanoid robots with Apollo? To find out, we spoke with Apptronik’s founders, CEO Jeff Cardenas and CTO Nick Paine.

Keep Reading ↓Show less

When Breathing Sciences Lead to a Mobile Life-Support Device

The compact unit is equipped with an innovative ventilator that recovers oxygen exhaled by the patient

5 min read
A soldier carrying a MOVES SLC portable life support unit walks over to an injured person on the ground.

Thornhill Medical's mobile life-support device, called MOVES SLC, has been used by military medical teams for five years. The unit can be slung across the shoulder and includes a circle-circuit ventilator and oxygen concentrator that eliminate the need to carry heavy, dangerous high pressure O2 cylinders.

Thornhill Medical

This is a sponsored article brought to you by LEMO.

A bomb explodes — medical devices set to action.

It is only in war that both sides of human ingenuity coexist so brutally. On the one side, it innovates to wound and kill, on the other it heals and saves lives. Side by side, but viscerally opposed.

Dr. Joe Fisher is devoted to the light side of human ingenuity, medicine. His research at Toronto’s University Health Network has made major breakthroughs in understanding the absorption and use of oxygen by the body. Then, based on the results, he developed new, highly efficient methods of delivering oxygen to patients.

In 2004, together with other physicians and engineers, he created a company to develop solutions based on his innovations. He named it after the Toronto neighborhood where he still lives — Thornhill Medical.

Keep Reading ↓Show less
{"imageShortcodeIds":["32836618"]}