The December 2022 issue of IEEE Spectrum is here!

Close bar

"Nothing About Us Without Us"

Assistive technologies are often designed without involving the people these technologies are supposed to help. That needs to change.

3 min read
A photo of two people holding signs outside.  One is in a wheelchair.
Erik McGregor/LightRocket/Getty Images

Before we redesigned our website a couple of years ago, we took pains to have some users show us how they navigate our content or complete specific tasks like leaving a comment or listening to a podcast. We queried them about what they liked or didn’t like about how our content is presented. And we took onboard their experiences and designed a site and a magazine based on that feedback.

So when I read this month’s cover story by Britt Young about using a variety of high- and low-tech prosthetic hands, I was surprised to learn that much bionic-hand development is conducted without taking the lived experience of people who use artificial hands into account.


I shouldn’t have been. While user-centered design is a long-standing practice in Web development, it doesn’t seem to have expanded deep into other product-development practices. A quick search on the IEEE Xplore Digital Library tallied less than 2,000 papers (out of 5.7 million) on “user-centered design.” Five papers bubbled up when searching “user-centered design” and “prosthesis.”

Young, who is working on a book about the prosthetics industry, was in the first cohort of toddlers fitted with a myoelectric prosthetic hand, which users control by tensing and relaxing their muscles against sensors inside the device’s socket. Designed by people Young characterizes as “well-intentioned engineers,” these technologically dazzling hands try to recreate in all its complex glory what Aristotle called “the instrument of instruments.”

“It’s more important that we get to live the lives we want, with access to the tools we need, than it is to make us look like everyone else.”

While high-tech solutions appeal to engineers, Young makes the case that low-tech solutions like the split hook are often more effective for users. “Bionic hands seek to make disabled people ‘whole,’ to have us participate in a world that is culturally two-handed. But it’s more important that we get to live the lives we want, with access to the tools we need, than it is to make us look like everyone else.”

As Senior Editor Stephen Cass pointed out to me, one of the rallying cries of the disabled community is “nothing about us, without us.” It is a response to a long and often cruel history of able-bodied people making decisions for people with disabilities. Even the best intentions don’t make up for doing things for disabled people instead of with them, as we see in Young’s article.

Assistive and other technologies can indeed have huge positive impacts on the lives of people with disabilities. IEEE Spectrum has covered many of these developments over the decades, but generally speaking it has involved able-bodied journalists writing about assistive technology, often with the perspective of disabled people relegated to a quote or two, if it was included at all.

We are fortunate now to have the chance to break that pattern, thanks to a grant from the IEEE Foundation and the Jon C. Taenzer Memorial Fund. With the grant, Spectrum is launching a multiyear fellowship program for disabled writers. The goal is to develop writers with disabilities as technology journalists and provide practical support for their reporting. These writers will investigate not just assistive technologies, but also look at other technologies with ambitions for mass adoption through a disability lens. Will these technologies be built with inclusion in mind, or will disabled people be a literal afterthought? Our first step will be to involve people with disabilities in the design of the program, and we hope to begin publishing articles by fellows early next year.

This article appears in the October 2022 print issue.

The Conversation (1)
lynn brielmaier02 Oct, 2022
M

I use an eye gaze computer, Tobii Dynavox. Tobii Dynavox US: Assistive technology for communication

Many UI situations are maddening for me.

Std design are tick boxes, usually small, on the extreme left side of the screen. Where my calibration is weakest.

A trickle-down of the technology - for gamers, & the curious : https://gaming.tobii.com/products/

Economics Drives Ray-Gun Resurgence

Laser weapons, cheaper by the shot, should work well against drones and cruise missiles

4 min read
In an artist’s rendering, a truck is shown with five sets of wheels—two sets for the cab, the rest for the trailer—and a box on the top of the trailer, from which a red ray is projected on an angle, upward, ending in the silhouette of an airplane, which is being destroyed

Lockheed Martin's laser packs up to 300 kilowatts—enough to fry a drone or a plane.

Lockheed Martin

The technical challenge of missile defense has been compared with that of hitting a bullet with a bullet. Then there is the still tougher economic challenge of using an expensive interceptor to kill a cheaper target—like hitting a lead bullet with a golden one.

Maybe trouble and money could be saved by shooting down such targets with a laser. Once the system was designed, built, and paid for, the cost per shot would be low. Such considerations led planners at the Pentagon to seek a solution from Lockheed Martin, which has just delivered a 300-kilowatt laser to the U.S. Army. The new weapon combines the output of a large bundle of fiber lasers of varying frequencies to form a single beam of white light. This laser has been undergoing tests in the lab, and it should see its first field trials sometime in 2023. General Atomics, a military contractor in San Diego, is also developing a laser of this power for the Army based on what’s known as the distributed-gain design, which has a single aperture.

Keep Reading ↓Show less