The February 2023 issue of IEEE Spectrum is here!

Close bar

Computer Model Shows Carbyne is the Strongest Known Material

Long theorized and recently synthesized, Carbyne proves to be the strongest material known

2 min read
Computer Model Shows Carbyne is the Strongest Known Material

Researchers at Rice University have developed computer models that reveal that the long-theorized material carbyne is the strongest material in the world.

The research, which was published in the journal ACS Nano (“Carbyne from First Principles: Chain of C Atoms, a Nanorod or a Nanorope”), demonstrated that carbyne should have the greatest tensile strength of any other known material, double that of graphene which itself is 200 times stronger than steel.

Boris Yakobson, a theoretical physicist at Rice who led the research, has previously demonstrated through computer modeling important possibilities for the use of carbon materials, like graphene. In the case of this carbyne research, as with his research into graphene, it remains to be seen whether the computer models can be duplicated in the physical world.

As the press release covering the research describes it: “Carbyne is a chain of carbon atoms held together by either double or alternating single and triple atomic bonds.” It has been encountered in highly compressed graphite. While there have been some demonstrations of the material being synthesized at room temperature,  it’s not clear how it could be produced in bulk.

If such a method could be developed, the Rice researchers believe that the material could be useful in a range of applications.

“You could look at it as an ultimately thin graphene ribbon, reduced to just one atom, or an ultimately thin nanotube,” said Yakobson in the press release. “It could be useful for nanomechanical systems, in spintronic devices, as sensors, as strong and light materials for mechanical applications or for energy storage.”

While the mere fact that carbyne is the strongest possible assembly of atoms is exciting to the Rice researchers, it will take a bit more research to exploit that strength. It wasn’t until recently that the strength of graphene could be fully exploited in a composite material.

The next step for the researchers will be to investigate the possibility of one-dimensional chains of atoms for other elements.

Image: Vasilii Artyukhov/Rice University

The Conversation (0)

Two Startups Are Bringing Fiber to the Processor

Avicena’s blue microLEDs are the dark horse in a race with Ayar Labs’ laser-based system

5 min read
Diffuse blue light shines from a patterned surface through a ring. A blue cable leads away from it.

Avicena’s microLED chiplets could one day link all the CPUs in a computer cluster together.


If a CPU in Seoul sends a byte of data to a processor in Prague, the information covers most of the distance as light, zipping along with no resistance. But put both those processors on the same motherboard, and they’ll need to communicate over energy-sapping copper, which slow the communication speeds possible within computers. Two Silicon Valley startups, Avicena and Ayar Labs, are doing something about that longstanding limit. If they succeed in their attempts to finally bring optical fiber all the way to the processor, it might not just accelerate computing—it might also remake it.

Both companies are developing fiber-connected chiplets, small chips meant to share a high-bandwidth connection with CPUs and other data-hungry silicon in a shared package. They are each ramping up production in 2023, though it may be a couple of years before we see a computer on the market with either product.

Keep Reading ↓Show less