Wind Turbines Power Liquid-Air Energy Storage

Can a novel design for wind energy with storage scale up?

2 min read
Wind Turbines Power Liquid-Air Energy Storage
Photo: Keuka Energy

One startup energy company is looking to reinvent not only wind energy, but also energy storage.

Keuka Energy recently launched a 125-kilowatt prototype vessel that uses its novel floating wind turbine design paired with liquid-air energy storage to create a steady source of electricity.

Unlike traditional wind turbines, which have three blades and a central gearbox, Keuka’s turbine is a pinwheel of aluminum blades that sits atop a floating V-shape platform containing liquid air.

The Florida-based company claims that its wind turbine design allows for larger turbines that could produce far more electricity. The world’s largest single offshore wind turbine is currently about 6 megawatts; Keuka says its full-size turbines could produce at least double that amount.

Liquid-air energy storage, also sometimes called cryogenic energy storage, is a long-term energy storage method: electricity liquefies air to nearly -200°C and then stores it at low pressure. When the energy is needed, the liquid air is pumped to a high level of pressure and heated to a gas state. The gas then drives a turbine.

Although it is an attractive energy-storage technology because of its long duration, liquid-air energy storage requires a significant amount of electricity to make the liquid air, limiting its usage by utilities. Keuka claims that because its design substantially reduced the cost by supplying the power directly from the turbines to the liquefaction equipment.

The company also says its wind turbine design is more cost effective, thanks to elimination of the gear box and the use of light-weight aluminum blades that cost less than 10 percent the price of traditional composite blades. Even if the technology is effective and can come in at lower costs, Keuka will likely face a long road to acceptance by the notoriously risk averse utility industry.

Keuka is not the only startup looking to advance liquid-air energy storage. In 2014, General Electric signed an exclusive global licensing deal with Highview Power Storage, a U.K. startup that makes utility-scale liquid-air energy storage systems.

Another similar technology that has gained more traction is compressed-air energy storage, which does not have the energy density of liquid air, but so far has proven more cost effective. Compressed air, while a cheap form of energy storage once built, is still expensive to build and geographically limited; underground caverns are needed to store the air.

Other startups are also looking offshore for cheap energy storage. Bright Energy is developing a system that would use offshore renewable energy to store compressed air in vessels in the ocean. Canadian startup Hydrostor also has a design to store compressed air underwater. 

If Keuka’s 125-kilowatt prototype is successful, it plans to launch a larger 25 MW demonstration project in early 2017.

The Conversation (0)

Smokey the AI

Smart image analysis algorithms, fed by cameras carried by drones and ground vehicles, can help power companies prevent forest fires

7 min read
Smokey the AI

The 2021 Dixie Fire in northern California is suspected of being caused by Pacific Gas & Electric's equipment. The fire is the second-largest in California history.

Robyn Beck/AFP/Getty Images

The 2020 fire season in the United States was the worst in at least 70 years, with some 4 million hectares burned on the west coast alone. These West Coast fires killed at least 37 people, destroyed hundreds of structures, caused nearly US $20 billion in damage, and filled the air with smoke that threatened the health of millions of people. And this was on top of a 2018 fire season that burned more than 700,000 hectares of land in California, and a 2019-to-2020 wildfire season in Australia that torched nearly 18 million hectares.

While some of these fires started from human carelessness—or arson—far too many were sparked and spread by the electrical power infrastructure and power lines. The California Department of Forestry and Fire Protection (Cal Fire) calculates that nearly 100,000 burned hectares of those 2018 California fires were the fault of the electric power infrastructure, including the devastating Camp Fire, which wiped out most of the town of Paradise. And in July of this year, Pacific Gas & Electric indicated that blown fuses on one of its utility poles may have sparked the Dixie Fire, which burned nearly 400,000 hectares.

Until these recent disasters, most people, even those living in vulnerable areas, didn't give much thought to the fire risk from the electrical infrastructure. Power companies trim trees and inspect lines on a regular—if not particularly frequent—basis.

However, the frequency of these inspections has changed little over the years, even though climate change is causing drier and hotter weather conditions that lead up to more intense wildfires. In addition, many key electrical components are beyond their shelf lives, including insulators, transformers, arrestors, and splices that are more than 40 years old. Many transmission towers, most built for a 40-year lifespan, are entering their final decade.

Keep Reading ↓ Show less