Video Friday: Qoobo the Headless Robot Cat Is Back

Your weekly selection of awesome robot videos

5 min read
Qoobo robot cat pillow
Photo: Qoobo

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

ICARSC 2020 – April 15-17, 2020 – [Online Conference]
ICRA 2020 – May 31-4, 2020 – [TBD]
ICUAS 2020 – June 9-12, 2020 – Athens, Greece
RSS 2020 – July 12-16, 2020 – [Online Conference]
CLAWAR 2020 – August 24-26, 2020 – Moscow, Russia

Let us know if you have suggestions for next week, and enjoy today’s videos.

You need this dancing robot right now.

By Vanessa Weiß at UPenn.

[ KodLab ]

Remember Qoobo the headless robot cat? There’s a TINY QOOBO NOW!

It’s available now on a Japanese crowdfunding site, but I can’t tell if it’ll ship to other countries.

[ Qoobo ]

Just what we need, more of this thing.

[ Vstone ]

HiBot, which just received an influx of funding, is adding new RaaS (robotics as a service) offerings to its collection of robot arms and snakebots.

HiBot ]

If social distancing already feels like too much work, Misty is like that one-in-a-thousand child that enjoys cleaning. See her in action here as a robot disinfector and sanitizer for common and high-touch surfaces. Alcohol reservoir, servo actuator, and nozzle not (yet) included. But we will provide the support to help you build the skill.

[ Misty Robotics ]

After seeing this tweet from Kate Darling that mentions an MIT experiment in which “a group of gerbils inhabited an architectural environment made of modular blocks, which were manipulated by a robotic arm in response to the gerbils’ movements,” I had to find a video of the robot arm gerbil habitat. The best I could do was this 2007 German remake, but it’s pretty good:

[ Lutz Dammbeck ]

We posted about this research almost a year ago when it came out in RA-L, but I’m not tired of watching the video yet.

Today’s autonomous drones have reaction times of tens of milliseconds, which is not enough for navigating fast in complex dynamic environments. To safely avoid fast moving objects, drones need low-latency sensors and algorithms. We depart from state of the art approaches by using event cameras, which are novel bioinspired sensors with reaction times of microseconds. We demonstrate the effectiveness of our approach on an autonomous quadrotor using only onboard sensing and computation. Our drone was capable of avoiding multiple obstacles of different sizes and shapes at relative speeds up to 10 meters/second, both indoors and outdoors.

[ UZH ]

In this video we present the autonomous exploration of a staircase with four sub-levels and the transition between two floors of the Satsop Nuclear Power Plant during the DARPA Subterranean Challenge Urban Circuit. The utilized system is a collision-tolerant flying robot capable of multi-modal Localization And Mapping fusing LiDAR, vision and inertial sensing. Autonomous exploration and navigation through the staircase is enabled through a Graph-based Exploration Planner implementing a specific mode for vertical exploration. The collision-tolerance of the platform was of paramount importance especially due to the thin features of the involved geometry such as handrails. The whole mission was conducted fully autonomously.


At Cognizant’s Inclusion in Tech: Work of Belonging conference, Cognizant VP and Managing Director of the Center for the Future of Work, Ben Pring, sits down with Mary “Mary” Cummings. Missy is currently a Professor at Duke University and the Director of the Duke Robotics Labe. Interestingly, Missy began her career as one of the first female fighter pilots in the U.S. Navy. Working in predominantly male fields – the military, tech, academia – Missy understands the prevalence of sexism, bias and gender discrimination.

Let’s hear more from Missy Cummings on, like, everything.

[ Duke ] via [ Cognizant ]

You don’t need to mountain bike for the Skydio 2 to be worth it, but it helps.

[ Skydio ]

Here’s a look at one of the preliminary simulated cave environments for the DARPA SubT Challenge.

[ Robotika ]

SherpaUW is a hybrid walking and driving exploration rover for subsea applications. The locomotive system consists of four legs with 5 active DoF each. Additionally, a 6 DoF manipulation arm is available. All joints of the legs and the manipulation arm are sealed against water. The arm is pressure compensated, allowing the deployment in deep sea applications.

SherpaUW’s hybrid crawler-design is intended to allow for extended long-term missions on the sea floor. Since it requires no extra energy to maintain its posture and position compared to traditional underwater ROVs (Remotely Operated Vehicles), SherpaUW is well suited for repeated and precise sampling operations, for example monitoring black smockers over a longer period of time.

[ DFKI ]

In collaboration with the Army and Marines, 16 active-duty Army soldiers and Marines used Near Earth’s technology to safely execute 64 resupply missions in an operational demonstration at Fort AP Hill, Virginia in Sep 2019. This video shows some of the modes used during the demonstration.

[ NEA ]

For those of us who aren’t either lucky enough or cursed enough to live with our robotic co-workers, HEBI suggests that now might be a great time to try simulation.

[ GitHub ]

DJI Phantom 4 Pro V2.0 is a complete aerial imaging solution, designed for the professional creator. Featuring a 1-inch CMOS sensor that can shoot 4K/60fps videos and 20MP photos, the Phantom 4 Pro V2.0 grants filmmakers absolute creative freedom. The OcuSync 2.0 HD transmission system ensures stable connectivity and reliability, five directions of obstacle sensing ensures additional safety, and a dedicated remote controller with a built-in screen grants even greater precision and control.

US $1600, or $2k with VR goggles.

[ DJI ]

Not sure why now is the right time to introduce the Fetch research robot, but if you forgot it existed, here’s a reminder.

[ Fetch ]

Two keynotes from the MBZIRC Symposium, featuring Oussama Khatib and Ron Arkin.


And here are a couple of talks from the 2020 ROS-I Consortium.

Roger Barga, GM of AWS Robotics and Autonomous Services at Amazon shares some of the latest developments around ROS and advanced robotics in the cloud.

Alex Shikany, VP of Membership and Business Intelligence for A3 shares insights from his organization on the relationship between robotics growth and employment.

[ ROS-I ]

Many tech companies are trying to build machines that detect people’s emotions, using techniques from artificial intelligence. Some companies claim to have succeeded already. Dr. Lisa Feldman Barrett evaluates these claims against the latest scientific evidence on emotion. What does it mean to “detect” emotion in a human face? How often do smiles express happiness and scowls express anger? And what are emotions, scientifically speaking?

[ Microsoft ]

The Conversation (0)

The Bionic-Hand Arms Race

The prosthetics industry is too focused on high-tech limbs that are complicated, costly, and often impractical

12 min read
A photograph of a young woman with brown eyes and neck length hair dyed rose gold sits at a white table. In one hand she holds a carbon fiber robotic arm and hand. Her other arm ends near her elbow. Her short sleeve shirt has a pattern on it of illustrated hands.

The author, Britt Young, holding her Ottobock bebionic bionic arm.

Gabriela Hasbun. Makeup: Maria Nguyen for MAC cosmetics; Hair: Joan Laqui for Living Proof

In Jules Verne’s 1865 novel From the Earth to the Moon, members of the fictitious Baltimore Gun Club, all disabled Civil War veterans, restlessly search for a new enemy to conquer. They had spent the war innovating new, deadlier weaponry. By the war’s end, with “not quite one arm between four persons, and exactly two legs between six,” these self-taught amputee-weaponsmiths decide to repurpose their skills toward a new projectile: a rocket ship.

The story of the Baltimore Gun Club propelling themselves to the moon is about the extraordinary masculine power of the veteran, who doesn’t simply “overcome” his disability; he derives power and ambition from it. Their “crutches, wooden legs, artificial arms, steel hooks, caoutchouc [rubber] jaws, silver craniums [and] platinum noses” don’t play leading roles in their personalities—they are merely tools on their bodies. These piecemeal men are unlikely crusaders of invention with an even more unlikely mission. And yet who better to design the next great leap in technology than men remade by technology themselves?

Keep Reading ↓Show less