Video Friday: Fluidic Fingers

Your weekly selection of awesome robot videos

4 min read
Fluidic fingers
Photo: UMD

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

Humanoids 2020 – July 19-21, 2021 – [Online Event]
RO-MAN 2021 – August 8-12, 2021 – [Online Event]
DARPA SubT Finals – September 21-23, 2021 – Louisville, KY, USA
WeRobot 2021 – September 23-25, 2021 – Coral Gables, FL, USA
IROS 2021 – September 27-1, 2021 – [Online Event]
ROSCon 2021 – October 21-23, 2021 – New Orleans, LA, USA

Let us know if you have suggestions for next week, and enjoy today's videos.

This 3D printed hand uses fluidic circuits (which respond differently to different input pressures) to create a soft robotic hand that only needs one input source to actuate three fingers independently.

[ UMD ]

Thanks, Fan!

Nano quadcopters are ideal for gas source localization (GSL) as they are safe, agile and inexpensive. However, their extremely restricted sensors and computational resources make GSL a daunting challenge. In this work, we propose a novel bug algorithm named ‘Sniffy Bug’, which allows a fully autonomous swarm of gas-seeking nano quadcopters to localize a gas source in an unknown, cluttered and GPS-denied environments.

[ MAVLab ]

Large-scale aerial deployment of miniature sensors in tough environmental conditions requires a deployment device that is lightweight, robust and steerable. We present a novel samara-inspired autorotating craft that is capable of autorotating and diving.

[ Paper ]

Scientists from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) have recently created a new algorithm to help a robot find efficient motion plans to ensure physical safety of its human counterpart. In this case, the bot helped put a jacket on a human, which could potentially prove to be a powerful tool in expanding assistance for those with disabilities or limited mobility.

[ MIT CSAIL ]

Listening to the language here about SoftBank's Whiz cleaning robot, I’ve got some concerns.

My worry is that the value that the robot is adding here is mostly in perception of cleaning, rather than actually, you know, cleaning. Which is still value, and that’s fine, but whether it’s long term commercially viable is less certain.

[ SoftBank ]

This paper presents a novel method for multi-legged robots to probe and test the terrain for collapses using its legs while walking. The proposed method improves on existing terrain probing approaches, and integrates the probing action into a walking cycle. A follow the-leader strategy with a suitable gait and stance is presented and implemented on a hexapod robot.

[ CSIRO ]

Robotics researchers from NVIDIA and University of Southern California presented their work at the 2021 Robotics: Science and Systems (RSS) conference called DiSECt, the first differentiable simulator for robotic cutting. The simulator accurately predicts the forces acting on a knife as it presses and slices through natural soft materials, such as fruits and vegetables.

[ NVIDIA ]

These videos from Moley Robotics have too many cuts in them to properly judge how skilled the robot is, but as far as I know, it only cooks the "perfect" steak in the sense that it will cook a steak of a given weight for a given time.

[ Moley ]

Most hands are designed for general purpose, as it’s very tedious to make task-specific hands. Existing methods battle trade-offs between the complexity of designs critical for contact-rich tasks, and the practical constraints of manufacturing, and contact handling.

This led researchers at MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) to create a new method to computationally optimize the shape and control of a robotic manipulator for a specific task. Their system uses software to manipulate the design, simulate the robot doing a task, and then provide an optimization score to assess the design and control.

[ MIT CSAIL ]

Drone Adventures maps wildlife in Namibia from above.

[ Drone Adventures ]

Some impressive electronics disassembly tasks using a planner that just unscrews things, shakes them, and sees whether it then needs to unscrew more things.

[ Imagine ]

The reconfigurable robot ReQuBiS can very well transition into biped, quadruped and snake configurations without the need of re-arranging modules, unlike most state-of-the-art models. Its design allows the robot to split into two agents to perform tasks in parallel for biped and snake mobility.

[ Paper ] via [ IvLabs ]

Thanks, Fan!

World Vision Kenya aims to improve the climate resilience of nine villages in Tana River County, sustainably manage the ecosystem and climate change, and restore the communities’ livelihoods by reseeding the hotspot areas with indigenous trees, covering at least 250 acres for every village. This can be challenging to achieve, considering the vast areas needing coverage. That’s why World Vision Kenya partnered with Kenya Flying Labs to help make this process faster, easier, and more efficient (and more fun!).

[ WeRobotics ]

Pieter Abbeel’s Robot Brains Podcast has started posting video versions of the episodes, if you’re into that sort of thing. There are interesting excerpts as well, a few of which we can share here.

[ Robot Brains ]

RSS took place this week with paper presentations, talks, Q&As, and more, but here are two of the keynotes that are definitely worth watching.

[ RSS 2021 ]

The Conversation (0)

How the U.S. Army Is Turning Robots Into Team Players

Engineers battle the limits of deep learning for battlefield bots

11 min read
Robot with threads near a fallen branch

RoMan, the Army Research Laboratory's robotic manipulator, considers the best way to grasp and move a tree branch at the Adelphi Laboratory Center, in Maryland.

Evan Ackerman
LightGreen

This article is part of our special report on AI, “The Great AI Reckoning.

"I should probably not be standing this close," I think to myself, as the robot slowly approaches a large tree branch on the floor in front of me. It's not the size of the branch that makes me nervous—it's that the robot is operating autonomously, and that while I know what it's supposed to do, I'm not entirely sure what it will do. If everything works the way the roboticists at the U.S. Army Research Laboratory (ARL) in Adelphi, Md., expect, the robot will identify the branch, grasp it, and drag it out of the way. These folks know what they're doing, but I've spent enough time around robots that I take a small step backwards anyway.

The robot, named RoMan, for Robotic Manipulator, is about the size of a large lawn mower, with a tracked base that helps it handle most kinds of terrain. At the front, it has a squat torso equipped with cameras and depth sensors, as well as a pair of arms that were harvested from a prototype disaster-response robot originally developed at NASA's Jet Propulsion Laboratory for a DARPA robotics competition. RoMan's job today is roadway clearing, a multistep task that ARL wants the robot to complete as autonomously as possible. Instead of instructing the robot to grasp specific objects in specific ways and move them to specific places, the operators tell RoMan to "go clear a path." It's then up to the robot to make all the decisions necessary to achieve that objective.

Keep Reading ↓ Show less