Study: Recycled Lithium Batteries as Good as Newly Mined

Cathodes made with novel direct-recycling beat commercial materials

3 min read
lithium ion battery recycling
iStockphoto

Lithium-ion batteries, with their use of riskily mined metals, tarnish the green image of EVs. Recycling to recover those valuable metals would minimize the social and environmental impact of mining, keep millions of tons of batteries from landfills, and cut the energy use and emissions created from making batteries.

But while the EV battery recycling industry is starting to take off, getting carmakers to use recycled materials remains a hard sell. "In general, people's impression is that recycled material is not as good as virgin material," says Yan Wang, a professor of mechanical engineering at Worcester Polytechnic Institute. "Battery companies still hesitate to use recycled material in their batteries."

A new study by Wang and a team including researchers from the US Advanced Battery Consortium (USABC), and battery company A123 Systems, shows that battery and carmakers needn't worry. The results, published in the journal Joule, show that batteries with recycled cathodes can be as good as, or even better than those using new state-of-the-art materials.

The team tested batteries with recycled NMC111 cathodes, the most common flavor of cathode containing a third each of nickel, manganese, and cobalt. The cathodes were made using a patented recycling technique that Battery Resourcers, a startup Wang co-founded, is now commercializing.

The recycled material showed a more porous microscopic structure that is better for lithium ions to slip in and out of. The result: batteries with an energy density similar to those made with commercial cathodes, but which also showed up to 53% longer cycle life.

While the recycled batteries weren't tested in cars, tests were done at industrially relevant scales. The researchers made 11 Ampere-hour industry-standard pouch cells loaded with materials at the same density as EV batteries. Engineers at A123 Systems did most of the testing, Wang says, using a protocol devised by the USABC to meet commercial viability goals for plug-in hybrid electric vehicles. He says the results prove that recycled cathode materials are a viable alternative to pristine materials.

EV batteries are complex beasts, and recycling them isn't easy. It involves either burning them using lots of energy, or grinding and dissolving them in acids. Most large recycling companies, which have mainly been recycling consumer electronics batteries, and upcoming battery-recycling startups use these methods to produce separate elements to sell to battery material companies, which will in turn make the high-grade materials for car and battery makers.

But the real value of an EV battery is in the cathode, Wang points out. Cathode materials are proprietary combinations of metals including nickel, manganese, and cobalt that are crafted into particles with specific sizes and structures.

Battery Resources' recycling technology produces various ready-to-use NMC cathode materials based on what a car company wants. That means selling the recycled materials could turn a profit, something recycling companies say can be hard to do. "We are the only company that gives an output that is a cathode material," he says. "Other companies make elements. So their value added is less."

Their technology involves shredding batteries and removing the steel cases, aluminum and copper wires, plastics, and pouch materials for recycling. The remaining black mass is dissolved in solvents, and the graphite, carbon and impurities are filtered out or chemically separated. Using a patented chemical technique, the nickel, manganese and cobalt are then mixed in desired ratios to make cathode powders.

A few other researchers, and outfits such as the ReCell Center, a battery-recycling research collaboration supported by the U.S. Department of Energy, are also developing direct recycling technology. But they likely will not be producing high volumes of recycled cathode material any time soon.

Battery Resourcers, meanwhile, is already selling their recycled materials to battery manufacturers at a small scale. The company plans to open its first commercial plant, which will be able to process 10,000 tons of batteries, in 2022. In September, they raised $70 million, with which they plan to launch two more facilities in Europe by the end of 2022.

This article appears in the December 2021 print issue as "Battery Recycling Really Works."

The Conversation (4)
Reuben Brown 01 Nov, 2021
INDV

@Corey Hi. From the data I have poured over from ABML, BASF and Dupont, Yes.

The metals, lithium, cobalt, nickel, etc.... seem to have at least the purity , and in the case of ABML, a few points better than buying the raw materials.

I am becoming a convert slowly but surely.

Reuben Brown 20 Oct, 2021
INDV

Nice Article.I am becoming convinced about the tech used for recycling batteries for lithium and other metals especially the way ABML, the only US based recycling Co, is doing it from their trials with BASF.I think this is the way of the future for sure.https://americanbatterytechnology.com/sustainability/

Corey Ashford 20 Oct, 2021
INDV

Is the recovered lithium worth anything?

1 Reply

Smokey the AI

Smart image analysis algorithms, fed by cameras carried by drones and ground vehicles, can help power companies prevent forest fires

7 min read
Smokey the AI

The 2021 Dixie Fire in northern California is suspected of being caused by Pacific Gas & Electric's equipment. The fire is the second-largest in California history.

Robyn Beck/AFP/Getty Images

The 2020 fire season in the United States was the worst in at least 70 years, with some 4 million hectares burned on the west coast alone. These West Coast fires killed at least 37 people, destroyed hundreds of structures, caused nearly US $20 billion in damage, and filled the air with smoke that threatened the health of millions of people. And this was on top of a 2018 fire season that burned more than 700,000 hectares of land in California, and a 2019-to-2020 wildfire season in Australia that torched nearly 18 million hectares.

While some of these fires started from human carelessness—or arson—far too many were sparked and spread by the electrical power infrastructure and power lines. The California Department of Forestry and Fire Protection (Cal Fire) calculates that nearly 100,000 burned hectares of those 2018 California fires were the fault of the electric power infrastructure, including the devastating Camp Fire, which wiped out most of the town of Paradise. And in July of this year, Pacific Gas & Electric indicated that blown fuses on one of its utility poles may have sparked the Dixie Fire, which burned nearly 400,000 hectares.

Until these recent disasters, most people, even those living in vulnerable areas, didn't give much thought to the fire risk from the electrical infrastructure. Power companies trim trees and inspect lines on a regular—if not particularly frequent—basis.

However, the frequency of these inspections has changed little over the years, even though climate change is causing drier and hotter weather conditions that lead up to more intense wildfires. In addition, many key electrical components are beyond their shelf lives, including insulators, transformers, arrestors, and splices that are more than 40 years old. Many transmission towers, most built for a 40-year lifespan, are entering their final decade.

Keep Reading ↓ Show less