Piezoelectric Nanowires Enable Energy Generation through Sound

Potential for mobile phones to be powered by the conversations we have on them

1 min read
Piezoelectric Nanowires Enable Energy Generation through Sound

Over at Nanowerk they have spotlighted research coming out Korea that has demonstrated the ability to use piezoelectric nanowires that can turn 100 decibel into enough energy to power very small electronic devices “self-powered sensors, e-papers, or body-implantable tiny devices” with the aim of powering larger devices when new nanomaterials are developed.

According to Dr. Jong Min Kim, Director of Frontier Research Lab, Samsung Advanced Institute of Technology (SAIT) and Sang-Woo Kim, a professor in the School of Advanced Materials Science & Engineering at Sungkyunkwan University, it is very difficult to use mechanical energy from sound in order to generate electrical energy using a conventional PZT-based bulk or thin film piezoelectric energy harvester.

The researchers overcame this obstacle by employing zinc oxide nanowires to serve as piezoelectric material sensitive enough to respond to sound energy. The nanogenerator device they made was able to transform 100 dB into an AC output voltage of 50mV.

The research was originally published in August 30, 2010, online issue of Advanced Materials.

The clearest application for this technology would be in cellular phones where one’s conversations could be used to power the device. However, since our speaking voice is around 60-70 dB and the device currently is not effective in generating power from sound less than 100 dB, it’s clear that more work has to be done.

The researchers believe the biggest obstacle they need to overcome is the limitations of zinc oxide, which they believe will help them design a device that will have improved piezoelectric performance.

The Conversation (0)

Two Startups Are Bringing Fiber to the Processor

Avicena’s blue microLEDs are the dark horse in a race with Ayar Labs’ laser-based system

5 min read
Diffuse blue light shines from a patterned surface through a ring. A blue cable leads away from it.

Avicena’s microLED chiplets could one day link all the CPUs in a computer cluster together.

Avicena

If a CPU in Seoul sends a byte of data to a processor in Prague, the information covers most of the distance as light, zipping along with no resistance. But put both those processors on the same motherboard, and they’ll need to communicate over energy-sapping copper, which slow the communication speeds possible within computers. Two Silicon Valley startups, Avicena and Ayar Labs, are doing something about that longstanding limit. If they succeed in their attempts to finally bring optical fiber all the way to the processor, it might not just accelerate computing—it might also remake it.

Both companies are developing fiber-connected chiplets, small chips meant to share a high-bandwidth connection with CPUs and other data-hungry silicon in a shared package. They are each ramping up production in 2023, though it may be a couple of years before we see a computer on the market with either product.

Keep Reading ↓Show less