New Sensor Integrated Within Dental Implants Monitors Bone Health

The device could one day mean less x-rays for people with dental implants

2 min read
The newly designed implantable bone sensor conveys information to a reader.
The newly designed implantable bone sensor conveys information to a reader.
Illustration: Shahid Beheshti University/IEEE

Scientists have created a new sensor that can be integrated within dental implants to passively monitor bone growth, bypassing the need for multiple x-rays of the jaw. The design is described in study published September 25 in IEEE Sensors Journal.

Currently, x-rays are used to monitor jaw health following a dental implant. Dental x-rays typically involve low doses of radiation, but people with dental implants may require more frequent x-rays to monitor their bone health following surgery. And, as professor Alireza Hassanzadeh of Shahid Beheshti University, Tehran, notes, “Too many X-rays is not good for human health.”

To reduce this need for x-rays, Hassanzadeh and two graduate students at Shahid Beheshti University designed a new sensor that can be integrated within dental implants. It passively measures changes in the surrounding electrical field (capacitance) to monitor bone growth. Two designs, for short- and long-term monitoring, were created.

The sensors are made of titanium and poly-ether-ether-ketone, and are integrated directly into a dental implant using microfabrication methods. The designs do not require any battery, and passively monitor changes in capacitance once the dental implant is in place.

“When the bone is forming around the sensor, the capacitance of the sensor changes,” explains Hassanzadeh. This indicates how the surrounding bone growth changes over time. The changes in capacitance, and thus bone growth, are then conveyed to a reader device that transfers the measurements into a data logger.  

In their study, the researchers tested the sensors in the femur and jaw bone of a cow. “The results reveal that the amount of bone around the implant has a direct effect on the capacitance value of the sensor,” says Hassanzadeh.

He says that the sensor still needs to be optimized for size and different implant shapes, and clinical experiments will need to be completed with different kinds of dental implant patients. “We plan to commercialize the device after some clinical tests and approval from FDA and authorities,” says Hassanzadeh.

The Conversation (0)

Are You Ready for Workplace Brain Scanning?

Extracting and using brain data will make workers happier and more productive, backers say

11 min read
Vertical
A photo collage showing a man wearing a eeg headset while looking at a computer screen.
Nadia Radic
DarkGray

Get ready: Neurotechnology is coming to the workplace. Neural sensors are now reliable and affordable enough to support commercial pilot projects that extract productivity-enhancing data from workers’ brains. These projects aren’t confined to specialized workplaces; they’re also happening in offices, factories, farms, and airports. The companies and people behind these neurotech devices are certain that they will improve our lives. But there are serious questions about whether work should be organized around certain functions of the brain, rather than the person as a whole.

To be clear, the kind of neurotech that’s currently available is nowhere close to reading minds. Sensors detect electrical activity across different areas of the brain, and the patterns in that activity can be broadly correlated with different feelings or physiological responses, such as stress, focus, or a reaction to external stimuli. These data can be exploited to make workers more efficient—and, proponents of the technology say, to make them happier. Two of the most interesting innovators in this field are the Israel-based startup InnerEye, which aims to give workers superhuman abilities, and Emotiv, a Silicon Valley neurotech company that’s bringing a brain-tracking wearable to office workers, including those working remotely.

Keep Reading ↓Show less
{"imageShortcodeIds":[]}