The December 2022 issue of IEEE Spectrum is here!

Close bar

Neuromorphic Chips Are Destined for Deep Learning—or Obscurity

Researchers in this specialized field have hitched their wagon to deep learning’s star

9 min read
Vertical
Opening illustration for this feature article.
Illustration: Chad Hagen
Pink

People in the tech world talk of a technology “crossing the chasm" by making the leap from early adopters to the mass market. A case study in chasm crossing is now unfolding in neuromorphic computing.

The approach mimics the way neurons are connected and communicate in the human brain, and enthusiasts say neuromorphic chips can run on much less power than traditional CPUs. The problem, though, is proving that neuromorphics can move from research labs to commercial applications. The field's leading researchers spoke frankly about that challenge at the Neuro Inspired Computational Elements Workshop, held in March at the IBM research facility at Almaden, Calif.

Keep reading...Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions
Colorful chip with wires coming out of it surrounded by large metal plates.

Engineers probe the performance of noisy bits that, when working together, may solve some problems better than quantum computers.

Lang Zeng/Beihang University

A large universal quantum computer is still an engineering dream, but machines designed to leverage quantum effects to solve specific classes of problems—such as D-wave’s computers—are alive and well. But an unlikely rival could challenge these specialized machines: computers built from purposely noisy parts.

This week at the IEEE International Electron Device Meeting (IEDM 2022), engineers unveiled several advances that bring a large-scale probabilistic computer closer to reality than ever before.

Keep Reading ↓Show less

How to Stake Electronic Components Using Adhesives

Staking provides extra mechanical support for various electronic parts

2 min read
Adhesive staking of DIP component on a circuit board using Master Bond EP17HTDA-1.

The main use for adhesive staking is to provide extra mechanical support for electronic components and other parts that may be damaged due to vibration, shock, or handling.

Master Bond

This is a sponsored article brought to you by Master Bond.

Sensitive electronic components and other parts that may be damaged due to vibration, shock, or handling can often benefit from adhesive staking. Staking provides additional mechanical reinforcement to these delicate pieces.

Keep Reading ↓Show less