A Research Team Looks to Nanotechnology to Fight Ebola Virus

With existing medicines unable to stem the Ebola outbreak, researchers turn to nanotech for a solution

2 min read
A Research Team Looks to Nanotechnology to Fight Ebola Virus
Image: Getty Images

With the Ebola virus death toll now topping 1000 and even the much publicized experimental treatment ZMapp failing to save the life of a Spanish missionary priest who was treated with it, it is clear that scientists need to explore new ways of fighting the deadly disease. For researchers at Northeastern University in Boston, one possibility may be using nanotechnology.

“It has been very hard to develop a vaccine or treatment for Ebola or similar viruses because they mutate so quickly,” said Thomas Webster, the chair of Northeastern’s chemical engineering department, in a press release. “In nanotechnology we turned our attention to developing nanoparticles that could be attached chemically to the viruses and stop them from spreading.”

Webster, along with many researchers in the nanotechnology community, have been trying to use gold nanoparticles, in combination with near-infrared light, to kill cancer cells with heat. The hope is that the same approach could be used to kill the Ebola virus.

His team is currently developing methods to make cancer cells attract gold nanoparticles. Infrared light them heats up the particles, destroying the cancer cells. Healthy cells wouldn't attract the nanoparticles and would not be affected. To magnify the heating effect, Webster increased the surface area of the gold nanoparticles by shaping them as stars. He dubbed them gold nanostars.

“The star has a lot more surface area, so it can heat up much faster than a sphere can,” Webster said in the release. “And that greater surface area allows it to attack more viruses once they adsorb to the particles.”

At his lab, he and his students are testing the nanostars on syn­thetic analogs that mimic viruses’ struc­tures. He said they've "realized the potential," and although he's hopeful, he doesn't want to create false expectations, noting that using nanotechnology to fight the Ebola virus is still in its early days.

“There is obviously such a huge need right now for ways to treat Ebola and other viruses, and it’s up to us to study and look at new and creative ways that traditional medicine really can’t.”

The Conversation (0)

Restoring Hearing With Beams of Light

Gene therapy and optoelectronics could radically upgrade hearing for millions of people

13 min read
A computer graphic shows a gray structure that’s curled like a snail’s shell. A big purple line runs through it. Many clusters of smaller red lines are scattered throughout the curled structure.

Human hearing depends on the cochlea, a snail-shaped structure in the inner ear. A new kind of cochlear implant for people with disabling hearing loss would use beams of light to stimulate the cochlear nerve.

Lakshay Khurana and Daniel Keppeler
Blue

There’s a popular misconception that cochlear implants restore natural hearing. In fact, these marvels of engineering give people a new kind of “electric hearing” that they must learn how to use.

Natural hearing results from vibrations hitting tiny structures called hair cells within the cochlea in the inner ear. A cochlear implant bypasses the damaged or dysfunctional parts of the ear and uses electrodes to directly stimulate the cochlear nerve, which sends signals to the brain. When my hearing-impaired patients have their cochlear implants turned on for the first time, they often report that voices sound flat and robotic and that background noises blur together and drown out voices. Although users can have many sessions with technicians to “tune” and adjust their implants’ settings to make sounds more pleasant and helpful, there’s a limit to what can be achieved with today’s technology.

Keep Reading ↓Show less
{"imageShortcodeIds":[]}