The December 2022 issue of IEEE Spectrum is here!

Close bar

Gold Nanoparticles Self Assemble into Very Large 2D Superlattice

Self-assembly process could hold promise for scaling down features of today's semiconductors

1 min read

One could argue that the industry that has driven nanotechnology’s development most over the past 20 years has been the semiconductor industry.

So when researchers at Rensselaer Polytechnic Institute discovered a method for creating a 2D layer of gold nanoparticles that self assembled themselves into a superlattice, they obviously thought of semiconductors.

“Thinking about semiconductors, this discovery could offer new solutions for scaling down the features of today's most advanced 32-nm computer chips to have features in the range of less than 20 nm, or even less than 10 nm," says Sang-Kee Eah, assistant professor in the Department of Physics, Applied Physics, and Astronomy at Rensselaer.

The research, which was published in the Journal of Materials Chemistry, discovered that when the gold nanoparticles were infused with liquid toluene a monolayer of gold would form on the surface of the liquid where it met the air. They moved the layer onto a silicon wafer and evaporated the water.

The video below provides some nice visuals on the monolayer.

The Conversation (0)

The Transistor at 75

The past, present, and future of the modern world’s most important invention

2 min read
A photo of a birthday cake with 75 written on it.
Lisa Sheehan
LightGreen

Seventy-five years is a long time. It’s so long that most of us don’t remember a time before the transistor, and long enough for many engineers to have devoted entire careers to its use and development. In honor of this most important of technological achievements, this issue’s package of articles explores the transistor’s historical journey and potential future.

Keep Reading ↓Show less