The February 2023 issue of IEEE Spectrum is here!

Close bar

Electromagnetic Warfare Is Here

A briefcase-size radio weapon could wreak havoc in our networked world

10 min read
Electromagnetic Warfare Is Here
Photo: Dan Saelinger

data network roomPhoto: Dan Saelinger; CGI: Swell; Prop Stylist: Birte Von Kampen

In the 2001 action movie Ocean’s Eleven, criminals use an electromagnetic weapon to black out a portion of Las Vegas. Very futuristic, you may say, but the threat is real and growing.

Keep reading...Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

Twistronic Yarns Harvest Energy From Movement

Novel fabrics could power wearables and potentially harvest energy from oceans

3 min read
Three SEM images show from top, 3 twisted slightly plied yarns, a plied harvester and a twist configuration, colorized to highlight the sections.

Twistrons, made from spun carbon nanotubes (CNTs), convert mechanical movement into electricity. UT Dallas researchers made a new kind of twistron by intertwining three individual strands of spun carbon nanotube fibers to make a single yarn. Their method was similar to the way conventional yarns used in textiles are constructed.

The University of Texas at Dallas

Novel yarns made with carbon nanotubes can generate electricity from mechanical energy better than any other material to date, a new study finds.

The high-tech yarns, known as twistrons, can be sewn into clothes to produce electricity from human motion or deployed in the ocean to harvest energy from waves, researchers say.

Keep Reading ↓Show less

Fine-Tuning the Factory: Simulation App Helps Optimize Additive Manufacturing Facility

Additive manufacturing processes can provide rapid and customizable production of high-quality components

7 min read
Fine-Tuning the Factory: Simulation App Helps Optimize Additive Manufacturing Facility

An example of a part produced through the metal powder bed fusion process.

This sponsored article is brought to you by COMSOL.

History teaches that the Industrial Revolution began in England in the mid-18th century. While that era of sooty foundries and mills is long past, manufacturing remains essential — and challenging. One promising way to meet modern industrial challenges is by using additive manufacturing (AM) processes, such as powder bed fusion and other emerging techniques. To fulfill its promise of rapid, precise, and customizable production, AM demands more than just a retooling of factory equipment; it also calls for new approaches to factory operation and management.

Keep Reading ↓Show less
{"imageShortcodeIds":["32338242"]}