Could an SRAM Hourglass Save RFID Chips Just in Time?

New batteryless clock technology could enable a leap forward in chip security

3 min read
Image: Getty Images
Image: Getty Images

Illustration of data dematerializing.Data Dematerializes: Data (like this picture of the Tardis) stored in an RFID chip's SRAM decays. The TARDIS technology uses that decay as a clock that tells when the chip last received power.Images: Kevin Fu

6 August 2012—A new technology to be unveiled later this week at the USENIX Security Symposium creates a short-duration “clock” on batteryless radio-frequency identification (RFID) chips, rendering their cryptographic systems much less vulnerable to attack, the researchers say. 

Keep Reading ↓Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

The Ultimate Transistor Timeline

The transistor’s amazing evolution from point contacts to quantum tunnels

1 min read
A chart showing the timeline of when a transistor was invented and when it was commercialized.

Even as the initial sales receipts for the first transistors to hit the market were being tallied up in 1948, the next generation of transistors had already been invented (see “The First Transistor and How it Worked.”) Since then, engineers have reinvented the transistor over and over again, raiding condensed-matter physics for anything that might offer even the possibility of turning a small signal into a larger one.

Keep Reading ↓Show less