The February 2023 issue of IEEE Spectrum is here!

Close bar

Paying Tribute to 1997 IEEE President Charles K. Alexander

The Life Fellow was a professor at Cleveland State University

4 min read
portrait of man smiling against a light background
The Alexander Family

Charles K. Alexander, 1997 IEEE president, died on 17 October at the age of 79.

The active volunteer held many high-level positions throughout the organization, including 1991–1992 IEEE Region 2 director. He was also the 1993 vice president of the IEEE United States Activities Board (now IEEE-USA).


The IEEE Life Fellow worked in academia his entire career. At the time of his death, he was a professor of electrical and computer engineering at Cleveland State University and served as dean of its engineering school.

He was a former professor and dean at several schools including Temple University, California State University, Northridge, and Ohio University. He also was a consultant to companies and government agencies, and he was involved in research and development projects in solar energy and software engineering.

Alexander was dedicated to making IEEE more meaningful and helpful to engineering students. He helped found the IEEE Student Professional Awareness program, which offers talks and networking events. Alexander also helped found IEEE’s student publication IEEE Potentials.

He mentored many students.

“My life has been so positively impacted with the significant opportunity to know such a giant in the engineering world,” says Jim Watson, an IEEE senior life member and one of Alexander’s mentees. “While many are very successful engineers and instructors, Dr. Alexander rises far above those who contributed to the success of others.”

Helping engineering students succeed

Alexander was born in Amherst, Ohio, where he became interested in mechanical engineering at a young age. He fixed the cars and machines used on his family’s farm, according to a 2009 oral history conducted by the IEEE History Center.

He switched his interests and then earned a bachelor’s degree in electrical engineering in 1965 from Ohio Normal (now Ohio Northern University), in Ada. As a freshman, he joined the American Institute of Electrical Engineers, one of IEEE’s predecessor societies. While he was an undergraduate, he served as secretary of the school’s AIEE student branch.

Alexander went on to receive master’s and doctoral degrees in electrical engineering from Ohio University in Athens, in 1967 and 1971 respectively. As a graduate student, he advised the university’s Eta Kappa Nu chapter, the engineering honor society that is now IEEE’s honor society. He significantly increased meeting attendance, he said in the oral history. Thanks to his efforts, he said, the chapter was ranked one of the top four in the country at the time.

After graduating, he joined Ohio University in 1971 as an assistant professor of electrical engineering. During this time, he also worked as a consultant for the U.S. Air Force and Navy, designing manufacturing processes for their various new systems. Alexander also designed a testing system for solid-state filters, which were used in atomic warheads for missiles on aircraft carriers.

He left a year later to join Youngstown State University, in Ohio, as an associate professor of electrical engineering. He was faculty advisor for the university’s IEEE student branch and helped increase its membership from 20 students to more than 200, according to the oral history. In 1980 he moved to Tennessee and became a professor of electrical engineering at Tennessee Tech University, in Cookeville. He also helped the school’s IEEE student branch boost its membership.

In 1986 he joined Temple University in Philadelphia as a professor and chair of the electrical engineering department. At the time, the university did not have an accredited engineering program, he said in the oral history.

“They brought me on board to help get the undergraduate programs in all three disciplines accredited,” he said. He also created master’s degree and Ph.D. programs for electrical engineering. He served as acting dean of the university’s college of engineering from 1989 to 1994.

After the engineering programs became accredited, Alexander said in the oral history that his job was done there so he left Temple in 1994 to join California State University, Northridge. He was dean of engineering and computer science there.

Alexander returned to Ohio University as a visiting professor of electrical engineering and computer science. From 1998 to 2002, he was interim director of the school’s Institute for Corrosion and Multiphase Technology. The institute’s researchers predict and resolve corrosion in oil and gas production and transportation infrastructure.

But after a few years, Alexander said, he missed creating and growing engineering programs at universities, so when an opportunity opened up at Cleveland State University in 2007, he took it. As dean of the university’s engineering school, he added 12 faculty positions.

Supporting student members’ professional development

Throughout his career, Alexander was an active IEEE volunteer. He served as chair of the IEEE Student Activities Committee, where he helped launch programs and services that are still being offered today. They include the IEEE Student Professional Awareness Program and the WriteTalk program (now ProSkills), which helps students develop their communication skills.

He was editor of the IEEE Transactions on Education. Along with IEEE Senior Member Jon R. McDearman, he helped launch IEEE Potentials.

Potentials was designed to be something of value for the undergraduates, who don’t want to read technical papers,” Alexander said in the oral history. “We styled it after IEEE Spectrum. Jon and I decided to include articles that would help students on topics like career development and how to be successful.”

Alexander continued to rise through the ranks in IEEE and was elected the 1991–1992 Region 2 director. The following year, he became vice president of the IEEE United States Activities Board (now IEEE-USA) and served in that position for two years.

He was elevated to IEEE Fellow in 1994 “for leadership in the field of engineering education and the professional development of engineering students.”

He was elected as the 1997 IEEE president.

“It was an incredible honor,” he said in the oral history. “One of the very special things that has happened to me.”

He received the 1984 IEEE Centennial Medal as well as several awards for his work in education, including a 1998 Distinguished Engineering Education Achievement Award and a 1996 Distinguished Engineering Education Leadership Award, both from the Engineering Council, the United Kingdom’s regulatory body for the profession.

“Dr. Alexander always emphasized the value of developing professional and ethical skills to enhance engineering career success,” Watson says. “He encouraged others to apply Winston Churchill’s famous quote ‘We make a living by what we get but we make a life by what we give.’”

To share your condolences or memories of Alexander, use the commenting form below.

The Conversation (0)

Get unlimited IEEE Spectrum access

Become an IEEE member and get exclusive access to more stories and resources, including our vast article archive and full PDF downloads
Get access to unlimited IEEE Spectrum content
Network with other technology professionals
Establish a professional profile
Create a group to share and collaborate on projects
Discover IEEE events and activities
Join and participate in discussions
Illustration showing an astronaut performing mechanical repairs to a satellite uses two extra mechanical arms that project from a backpack.

Extra limbs, controlled by wearable electrode patches that read and interpret neural signals from the user, could have innumerable uses, such as assisting on spacewalk missions to repair satellites.

Chris Philpot

What could you do with an extra limb? Consider a surgeon performing a delicate operation, one that needs her expertise and steady hands—all three of them. As her two biological hands manipulate surgical instruments, a third robotic limb that’s attached to her torso plays a supporting role. Or picture a construction worker who is thankful for his extra robotic hand as it braces the heavy beam he’s fastening into place with his other two hands. Imagine wearing an exoskeleton that would let you handle multiple objects simultaneously, like Spiderman’s Dr. Octopus. Or contemplate the out-there music a composer could write for a pianist who has 12 fingers to spread across the keyboard.

Such scenarios may seem like science fiction, but recent progress in robotics and neuroscience makes extra robotic limbs conceivable with today’s technology. Our research groups at Imperial College London and the University of Freiburg, in Germany, together with partners in the European project NIMA, are now working to figure out whether such augmentation can be realized in practice to extend human abilities. The main questions we’re tackling involve both neuroscience and neurotechnology: Is the human brain capable of controlling additional body parts as effectively as it controls biological parts? And if so, what neural signals can be used for this control?

Keep Reading ↓Show less
{"imageShortcodeIds":[]}