Graphene for Electrodes in Organic Solar Cells Could Reduce Costs

While organic solar cells have been promising an inexpensive way to exploit solar power in comparison to their silicon-based cousins, things have not panned out in the marketplace quite as expected with flexible solar cells being rolled out onto roofs like asphalt roofing material.

But researchers at MIT believe they have overcome at least one obstacle with organic solar cells by finding a material for the electrodes that will match organic cells’ flexibility and replace the expensive indium-tin-oxide (ITO).

The magic material is none other than graphene, the wonder material of the latter half of the first decade of the 21st century.

Of course, this is not the first time that graphene has been discussed in relation to organic solar cells, but actually getting the graphene to go where you want it to go remained an obstacle.

In a paper published in the Dec. 17 edition of the Institute of Physics journal Nanotechnology, MIT professors Jing Kong and Vladimir Bulovic demonstrated how they were able to overcome the material’s resistance to adhering to the panel. The solution turned out to be a doping process that introduced impurities into the graphene that made it bond with the panel.

After having overcome this manufacturing obstacle, the graphene performed much like ITO except that it was more flexible and also transparent to allow all available sunlight to pass through. But perhaps most importantly, carbon is far more abundant than the increasingly rare ITO, which would likely reduce the cost of the product.

Related Stories

Nanoclast

IEEE Spectrum’s nanotechnology blog, featuring news and analysis about the development, applications, and future of science and technology at the nanoscale.

 
Editor
Dexter Johnson
Madrid, Spain
 
Contributor
Rachel Courtland
Associate Editor, IEEE Spectrum
New York, NY
Advertisement
Advertisement