Can a Polymer Membrane Be the Next Big Thing in Battery Technology?

At the end of last week, news came out of National University of Singapore's Nanoscience and Nanotechnology Initiative (NUSNNI) that an energy-storage membrane had been developed that was more cost-effective at storing energy than either rechargeable batteries or supercapacitors.

From the NUSNNI press release:

"The research team, led by Principal Investigator Dr Xie Xian Ning, used a polystyrene-based polymer to deposit the soft, foldable membrane converted from organic waste which, when sandwiched between and charged by two graphite plates, can store charge at 0.2 farads per square centimetre. This capability was well above the typical upper limit of 1 microfarad per square centimetre for a standard capacitor. The cost involved in energy storage is also drastically reduced with this invention, from about US$7 to store each farad using existing technologies based on liquid electrolytes to about US$0.62 per farad."

This is pretty amazing news, with publications including Energy & Environmental Science and Nature having already published articles this summer covering the research.

It’s also been so groundbreaking that there have been many calls to exercise caution about overoptimism. But one can’t help but hope for something to replace Li-ion battery technology, nano-enabled or not.

The application areas proposed for the membrane hit on all the favorites, like energy storage for hybrid vehicles and solar power systems.

Besides my usual caveat on these things—don’t expect much for the next few years—I am also a bit concerned that the researchers are seeking out venture capitalists to get this work into commercialization. If there’s one thing we’ve learned in the past 10 years, it’s the VC model just doesn’t get it done in nanotech. 



IEEE Spectrum’s nanotechnology blog, featuring news and analysis about the development, applications, and future of science and technology at the nanoscale.

Dexter Johnson
Madrid, Spain
Rachel Courtland
Associate Editor, IEEE Spectrum
New York, NY