Tech Talk iconTech Talk

Camera-Filled Dome Recreates Full 3-D Motion Scenes

Those thrilling moments when a soccer player kicks home the winning goal in the World Cup final or Beyonce debuts new dance choreography in concert might someday be recreated in full 3-D motion down to the smallest piece of confetti and played back from almost any angle. Such a possibility comes from a new motion-capture technique capable of reconstructing scenes captured by more than 500 video cameras mounted inside a two-story geodesic dome.

Read More

Bitcoin Gets Its Own TV Network

This September, if all goes according to plan, the Bitcoin blockchain will take to the radio waves in Finland. The project is called Kryptoradio. It's the result of a partnership between Koodilehto, a Finnish co-op specializing in open technology development, and another group that was responsible for developing and encouraging the adoption of the alternative digital currency known as FIMKrypto.

Together they have secured the rights to transmit updates to the Bitcoin blockchain across digital terrestrial television in Finland. To do so, they will use Digita, a Finnish network that provides coverage for approximately five million people—95 percent of the population, according to their estimates. The transmissions are scheduled to continue for two months as part of a pilot program, and longer if they can find the funding for it.

Read More

Leaked British Spy Catalog Reveals Tools to Manipulate Online Information

No online communication is for your eyes only in the age of Internet surveillance by government spy agencies. But a leaked British spy catalog has revealed a wide array of online tools designed to also control online communication by doing everything from hacking online polls to artificially boosting online traffic to a particular website.

Read More

UK: Let's Make a Spaceport!

In a bid for rapid-fire relevance in the emerging private spaceplane industry, the UK government announced its intent to open a commercial passenger spaceport within four years. Eight airfields have been singled out as the British Isles’ answer to New Mexico's “Spaceport America” — one each in England and Wales, with the remaining six in Scotland. 

Read More

An A for Raspberry Pi B+

This week the world’s most popular—and one of the world’s least expensive—home hobbyist computer kits just got upgraded.

The Raspberry Pi B+ retains its down-to-earth US $35 price. And it adds to its impressive arsenal of smartphone level computing power an additional two USB2 ports, a MicroSD storage slot (in place of the older SD card slot) plus lower power consumption and eight more hack-friendly general-purpose input-output pins.

Originally launched in 2012 as a low-priced, credit-card sized microcomputer aimed at the education and hobbyist markets, the Raspberry Pi has sold more than 3 million units to date, according to the nonprofit Raspberry Pi Foundation in Cambridge, U.K. (Cambridgeshire is also home to the computing world’s other great revolution in a tiny package, the ARM core processors that now — to Intel and AMD’s chagrin — comprise the CPU centerpiece of nearly every smartphone and tablet around the world today.)

Read More

Quantum Computing IPO on the Horizon

Investors longing to own a piece of the quantum computing future could get their chance in the next several years. A stock market listing could be on the way for D-Wave Systems, the Canadian company that has built what it describes as the world's first commercial quantum computers.

Read More

Bell Labs Sets New Record for Internet Over Copper

Traditional copper telephone lines can now run ultra-fast broadband service, at least in the lab.

Bell Labs, the research arm of Alcatel-Lucent, has developed a prototype technology that can deliver upload and download speeds of up to 10 gigabits per second (Gbps) simultaneously.

The technology, XG-FAST, is an extension of a new broadband standard, G.fast, which will be commercially available next year. XG-FAST uses an increased frequency range (up to 500 MHz) compared to G.fast to deliver higher speeds, but over shorter distances. In the lab, researchers achieved speeds topping 1 Gbps on a single copper pair over a distance of 70 meters. The eye-popping 10-Gbps rate was achieved over 30 meters using two pairs of lines, a technique referred to as bonding.

For some Internet providers, 70 meters may be enough to expand coverage. Many service providers have laid fiber across their networks, but getting it to every last home is an expensive additional cost.

Alcatel-Lucent said the new technology should allow for Internet connections over cable that are “indistinguishable” from fiber-to-the-home in places where it’s not “physically, economically or aesthetically viable to lay new fiber cables all the way into residences.”

“XG-FAST can help operators accelerate [fiber-to-the-home] deployments, taking fiber very close to customers without the major expense and delays associated with entering every home.” Federico Guillén, President of Alcatel-Lucent’s Fixed Networks business, said in a statement.

For the past few years, Alcatel-Lucent has also been working on other ways to improve the speed of fast Internet over copper. Another nagging issue they've been wrestling with is the cross talk that can leak between customers' copper wires. Alcatel-Lucent has introduced vectoring, which adjusts signals from the home that are sent back to the hardware in the street cabinet in order to minimize the interference. However, with G.fast, cross-talk "is more like cross-shouting," according to Alcatel's TechZine blog, and will require even more innovation if it's to be overcome. 

Vectoring was paired with Alcatel-Lucent’s very-high-speed DSL technology (VDSL2) starting in 2011, but the latest breakthrough at Bell Labs considerably dwarfs the speeds achieved with VDSL2, albeit over a far shorter distance. Earlier this year, Alcatel-Lucent set a new world record for real-world fiber speeds of 1.4 terabits per second.

“Our demonstration of 10 Gbps over copper is a prime example: by pushing broadband technology to its limits, operators can determine how they could deliver gigabit services over their existing networks, ensuring the availability of ultra-broadband access as widely and as economically as possible,”  Marcus Weldon, president of Bell Labs, said in a statement.

But the short distances over which XG-FAST operates in the lab may not be enough to deliver faster Internet over copper to those outside of dense, urban environments. Chris Green, a principal technology analyst at the Davies Murphy Group consultancy, told BBCNews that in small towns and especially rural locations, the distance from the street cabinet to the home would still likely render this latest breakthrough impractical.

“The problem that rural properties have is that they are usually very far away from the nearest telephone exchange,” he told BBCNews. “You can usually measure it in miles.”

 

Graphic: Bell Labs

Hackaday Prize Competition Gears Up

The World Cup is over. But we engineering nerds will still have the Hackaday Prize competition to entertain us.

After all, we really enjoyed the thrill of the Ansari X Prize competition for nongovernmental flights into space, which ran from 1996 until 2004, when Burt Rutan and his colleagues claimed it. And there was the American Helicopter Society’s Sikorsky Prize for a human-powered helicopter. The prize, which was established in 1980 and long remained a tantalizing challenge to athletic aeronauts, was finally awarded a year ago almost exactly.

Such engineering-design competitions are indeed great fun to follow. But unless you’re part of a well-funded and well-organized team, participation is out of the question. The Hackaday Prize is different, because any avid DIYer can throw his or her hat into the ring. All you need to do is come up with an idea for “an open, connected device” and describe the design by 4 August 2014. Then if you make the first cut, you’ll have until 29 September to build the hardware and be in the running for the grand prize: a trip into space, which will be awarded in Munich in November.

Wait, how is Hackaday going to send somebody into space? I for one wouldn’t want to ride in a rocket they built!

Mike Szczys, managing editor at Hackaday, explains that they are not erecting some sort of Jules Verne canon over there; they are offering to buy the winner a ticket to space at some point in the future, after commercial flights become available. And that might not take long: Virgin Galactic (an outgrowth of the aforementioned Ansari X Prize competition) hopes to begin its commercial sub-orbital operations sometime this year.

Even if you’re not keen on rocketing to the Kármán line, if you win, you can collect a cash award of US $196,418 instead—which, as Szczys explains, was chosen because it’s a Fibonacci number somewhat shy of what he and his colleagues expect a ticket into space will cost.

What sort of gizmos qualify for the Hackaday Prize? You can read up on all the details, but the requirements really only call for something that is open and connected, which is easy enough to satisfy. Of course, it would have to be really cool to win, place, or show. And the competition is bound to be brutal.

Current entries include a frequency-modulated continuous-wave radar (a much slicker version of the MIT coffee-can radar, which I described in 2012) and a 3D-printable Raman spectrometer controlled by a Raspberry Pi. My favorite at the moment, though, is a homebrew proton-precession magnetometer, something I once tried (and failed) to hack together myself.

So if you’re a DIYer who has always wanted to enter an engineering-design competition but were never in a position to do so, now’s your chance. Gentleman (and ladies), start your soldering irons. And may the best hack win.

How D-Wave Built Quantum Computing Hardware for the Next Generation

Photo: D-Wave Systems

One second is here and gone before most of us can think about it. But a delay of one second can seem like an eternity in a quantum computer capable of running calculations in millionths of a second. That's why engineers at D-Wave Systems worked hard to eliminate the one-second computing delay that existed in the D-Wave One—the first-generation version of what the company describes as the world's first commercial quantum computer.

Read More
Advertisement

Tech Talk

IEEE Spectrum’s general technology blog, featuring news, analysis, and opinions about engineering, consumer electronics, and technology and society, from the editorial staff and freelance contributors.

Newsletter Sign Up

Sign up for the Tech Alert newsletter and receive ground-breaking technology and science news from IEEE Spectrum every Thursday.

Advertisement
Load More