Why Mobile Voice Quality Still Stinks—and How to Fix It

Technologies such as VoLTE and HD Voice could improve sound quality, but cellular carriers aren’t deploying them fast enough

11 min read
cartoon of two guys talking on phones
Illustration: Serge Bloch

After several rings, John Beerends picks up my call on his cellphone. Beerends, a senior researcher at the Netherlands Organization for Applied Scientific Research, in Delft, is one of the world’s top experts on sound perception, and I’ve called from Boston to ask his opinion on the quality of audio on mobile phones. But the connection keeps cutting out, and what I can hear is almost unintelligible. I must sound just as bad, because he asks me to dial him back on his landline. This time, his voice is much clearer. And he immediately confirms what now seems glaringly obvious: Despite their ubiquity and decades-long existence, cellphones still make for pretty poor phones.

How can that be? After all, today’s smartphones are incredible feats of engineering. Packing the processing power of a mid-1980s supercomputer into a sleek, pocket-size slab, they can take photographs, play music and videos, and stream tens of megabits of data to the palm of your hand every second. But try calling your boss in rush-hour traffic to say you’re running late, and there’s a good chance your message won’t get through. “Mobile companies have rather lost the focus on a smartphone also being a telephone,” says Jeremy Green, now a tech-industry analyst at Machina Research, in Reading, England—on a cell connection that keeps dropping words.

Keep reading... Show less

Stay ahead of the latest trends in technology. Become an IEEE member.

This article is for IEEE members only. Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

Engineers Are Working on a Solar Microgrid to Outlast Lunar Nights

Future lunar bases will need power for mining and astronaut survival

4 min read
A rendering of a lunar base. In the foreground are rows of solar panels and behind them are two astronauts standing in front of a glass dome with plants inside.
P. Carril/ESA

The next time humans land on the moon, they intend to stay awhile. For the Artemis program, NASA and its collaborators want to build a sustained presence on the moon, which includes setting up a base where astronauts can live and work.

One of the crucial elements for a functioning lunar base is a power supply. Sandia National Laboratories, a research and development lab that specializes in building microgrids for military bases, is teaming up with NASA to design one that will work on the moon.

Keep Reading ↓ Show less

Trilobite-Inspired Camera Boasts Huge Depth of Field

New camera relies on “metalenses” that could be fabricated using a standard CMOS foundry

3 min read
Black and white image showing different white box shapes in rows

Scanning electron microscope image of the titanium oxide nanopillars that make up the metalens. The scale is 500 nanometers (nm).

NIST

Inspired by the eyes of extinct trilobites, researchers have created a miniature camera with a record-setting depth of field—the distance over which a camera can produce sharp images in a single photo. Their new study reveals that with the aid of artificial intelligence, their device can simultaneously image objects as near as 3 centimeters and as far away as 1.7 kilometers.

Five hundred million years ago, the oceans teemed with horseshoe-crab-like trilobites. Among the most successful of all early animals, these armored invertebrates lived on Earth for roughly 270 million years before going extinct.

Keep Reading ↓ Show less

Modern System Level Design for Aerospace & Defense

Join this webinar series to learn the most important aspects of modern system-level design for RF and microwave applications in aerospace and defense

1 min read
Keysight
Keysight

More than ever, aerospace and defense companies must lower costs, accelerate their R&D, and reduce risk, all while simultaneously maintaining a high level of mission readiness. Register for this free webinar now!

Keysight is addressing these design challenges for RF and microwave applications, particularly for aerospace and defense applications.

Keep Reading ↓ Show less