The December 2022 issue of IEEE Spectrum is here!

Close bar

What If You Had to Build a Socially Responsible SUV?

At GM's Challenge X, turbodiesel electric hybrids running on biodiesel are par for the course. Even hydraulic hybrids and ultracapacitors don't raise eyebrows.

8 min read

Car fanatic or not, few 20-year-olds can knowledgeably discuss the pros and cons of hydrogen fuel cells, ultracapacitors, and batteries for automotive energy storage—perhaps even fewer in scorching desert heat.

The scene was General Motors' Mesa Proving Grounds in Arizona. It is one of GM's two main North American test facilities, with 75 miles (121 kilometers [km]) of roads and a high-speed test track over 5000 acres (20 km2). The heat—up to 120 degrees Fahrenheit (49 degrees Celsius)—makes it ideal for testing vehicles and their air-conditioning under intense conditions. Half a century ago, the area was empty and remote, visited only by a few cattle. Now, this top-secret facility is rapidly being engulfed by hundreds of beige stucco houses in walled subdivisions.

Keep Reading ↓Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

We Need More Than Just Electric Vehicles

To decarbonize road transport we need to complement EVs with bikes, rail, city planning, and alternative energy

11 min read
A worker works on the frame of a car on an assembly line.

China has more EVs than any other country—but it also gets most of its electricity from coal.

VCG/Getty Images

EVs have finally come of age. The total cost of purchasing and driving one—the cost of ownership—has fallen nearly to parity with a typical gasoline-fueled car. Scientists and engineers have extended the range of EVs by cramming ever more energy into their batteries, and vehicle-charging networks have expanded in many countries. In the United States, for example, there are more than 49,000 public charging stations, and it is now possible to drive an EV from New York to California using public charging networks.

With all this, consumers and policymakers alike are hopeful that society will soon greatly reduce its carbon emissions by replacing today’s cars with electric vehicles. Indeed, adopting electric vehicles will go a long way in helping to improve environmental outcomes. But EVs come with important weaknesses, and so people shouldn’t count on them alone to do the job, even for the transportation sector.

Keep Reading ↓Show less