The July 2022 issue of IEEE Spectrum is here!

Close bar

We Will End Disability by Becoming Cyborgs

Neural interfaces and prosthetics will do away with biology’s failings

9 min read
Illustration: MCKIBILLO
Illustration: MCKIBILLO

biomedOpenPhoto: Adam Voorhes; Prop Stylist: Robin Finlay

Hugh Herr is a living exemplar of the maxim thatthe best way to predict the future is to invent it. At the age of 17, Herr was already an accomplished mountaineer, but during an ice-climbing expedition he lost his way in a blizzard and was stranded on a mountainside for three days. By the time rescuers found him, both of his legs were doomed by frostbite and had to be amputated below the knee. Once his scars healed, Herr spent months in rehab rooms trying out prosthetic legs, but he found them unacceptable: How could he climb with such clunky things? Surely, he thought, medical technologists could build replacement parts that wouldn’t slow him down.

Keep reading...Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

When Gamers Get Nasty

Researchers grapple with subjectivity as they develop aIgorithms to detect toxicity in online gaming

2 min read
A man wearing a headset is seen in a dark room playing video games
Getty Images

Online gaming is a chance for players to come together, socialize and enjoy some friendly competition. Unfortunately, this enjoyable activity can be hindered by abusive language and toxicity, negatively impacting the gaming experience and causing psychological harm. Gendered and racial toxicity, in particular, are all too common in online gaming.

To combat this issue, various groups of researchers have been developing AI models that can detect toxic behavior in real-time as people play. One group recently developed a new model, which is described in a study published May 23 in IEEE Transactions on Games. While the model can detect toxicity with a fair amount of accuracy, its development demonstrates just how challenging it can be to determine what is considered toxic—a subjective matter.

Keep Reading ↓Show less

Quantum Computing for Dummies

New guide helps beginners run quantum algorithms on IBM's quantum computers over the cloud

3 min read
An image of the inside of an IBM quantum computer.
IBM

Quantum computers may one day rapidly find solutions to problems no regular computer might ever hope to solve, but there are vanishingly few quantum programmers when compared with the number of conventional programmers in the world. Now a new beginner's guide aims to walk would-be quantum programmers through the implementation of quantum algorithms over the cloud on IBM's publicly available quantum computers.

Whereas classical computers switch transistors either on or off to symbolize data as ones or zeroes, quantum computers use quantum bits, or "qubits," which because of the peculiar nature of quantum physics can exist in a state called superposition where they are both 1 and 0 at the same time. This essentially lets each qubit perform two calculations at once. The more qubits are quantum-mechanically linked, or entangled (see our explainer), within a quantum computer, the greater its computational power can grow, in an exponential fashion.

Keep Reading ↓Show less

Modeling Microfluidic Organ-on-a-Chip Devices

Register for this webinar to enhance your modeling and design processes for microfluidic organ-on-a-chip devices using COMSOL Multiphysics

1 min read
Comsol Logo
Comsol

If you want to enhance your modeling and design processes for microfluidic organ-on-a-chip devices, tune into this webinar.

You will learn methods for simulating the performance and behavior of microfluidic organ-on-a-chip devices and microphysiological systems in COMSOL Multiphysics. Additionally, you will see how to couple multiple physical effects in your model, including chemical transport, particle tracing, and fluid–structure interaction. You will also learn how to distill simulation output to find key design parameters and obtain a high-level description of system performance and behavior.

Keep Reading ↓Show less