U.S. Air Force’s Plug-and-Play Satellites

Satellite design doesn’t have to be rocket science

11 min read
illustration of a plug-and-play satellite
Illustration: John MacNeill

When you buy a mouse for your computer, removing the packaging is probably the hardest part of integrating it into your home system. Once you plug in the USB cable, you click on the mouse, and it just works. For it to “just work,” of course, a great many things have to happen in the background: Via the USB cable, the mouse’s circuitry receives power, initializes, and is recognized by the computer as a valid device. Then the driver software takes over, identifying the device as a mouse and not, say, a printer or a keyboard. Finally, a rapid succession of electrical messages traverses the cable, and these messages are translated into commands that then move the cursor smoothly across your computer screen. The fact that you don’t need to know any of this to operate a mouse is by design: The mouse’s computer chips and embedded software conceal the device’s complexity.

This was not an isolated case—indeed, it’s universal. So eight years ago, a few of us at the Air Force Research Laboratory (AFRL) set out to find a better way. Along with a small cadre of researchers from industry, government, and academia, we have been studying the example of the personal computer and “plug-and-play” concepts from other industries in search of lessons we could apply to the task of building better spacecraft. Traditionally, satellite designers strive to increase raw performance or system capabilities by turning to faster processors or more sophisticated sensors. But we took a very different approach, concentrating instead on slashing the time it takes to go from inception to launch. Our goal was, well, lofty: to build a working satellite in just six days.

Keep reading... Show less

Stay ahead of the latest trends in technology. Become an IEEE member.

This article is for IEEE members only. Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

DARPA Wants a Better, Badder Caspian Sea Monster

Liberty Lifter X-plane will leverage ground effect

4 min read
A rendering of a grey seaplane with twin fuselages and backwards-facing propellers
DARPA

Arguably, the primary job of any military organization is moving enormous amounts of stuff from one place to another as quickly and efficiently as possible. Some of that stuff is weaponry, but the vast majority are things that support that weaponry—fuel, spare parts, personnel, and so on. At the moment, the U.S. military has two options when it comes to transporting large amounts of payload. Option one is boats (a sealift), which are efficient, but also slow and require ports. Option two is planes (an airlift), which are faster by a couple of orders of magnitude, but also expensive and require runways.

To solve this, the Defense Advanced Research Projects Agency (DARPA) wants to combine traditional sealift and airlift with the Liberty Lifter program, which aims to “design, build, and flight test an affordable, innovative, and disruptive seaplane” that “enables efficient theater-range transport of large payloads at speeds far exceeding existing sea lift platforms.”

Keep Reading ↓ Show less
{"imageShortcodeIds":["29824201"]}

IEEE Spectrum Wins Six Neal Awards

The publication was recognized for its editorial excellence, website, and art direction

1 min read
A group of smiling people holding two award placards in front of a backdrop for the Jess H. Neal Awards

The IEEE editorial and art team show off two of their five awards.

Bruce Byers/SIIA

IEEE Spectrum garnered top honors at this year’s annual Jesse H. Neal Awards ceremony, held on 26 April. Known as the “Pulitzer Prizes” of business-to-business journalism, the Neal Awards recognize editorial excellence. The awards are given by the SIIA (Software and Information Industry Association).

For the fifth year in a row, IEEE Spectrum was awarded the Best Media Brand. The award is given for overall editorial excellence.

Keep Reading ↓ Show less

Take the Lead on Satellite Design Using Digital Engineering

Learn how to accelerate your satellite design process and reduce risk and costs with model-based engineering methods

1 min read
Keysight
Keysight

Win the race to design and deploy satellite technologies and systems. Learn how new digital engineering techniques can accelerate development and reduce your risk and costs. Download this free whitepaper now!

Our white paper covers:

Keep Reading ↓ Show less