The December 2022 issue of IEEE Spectrum is here!

Close bar

U.S. Air Force’s Plug-and-Play Satellites

Satellite design doesn’t have to be rocket science

11 min read
illustration of a plug-and-play satellite
Illustration: John MacNeill

When you buy a mouse for your computer, removing the packaging is probably the hardest part of integrating it into your home system. Once you plug in the USB cable, you click on the mouse, and it just works. For it to “just work,” of course, a great many things have to happen in the background: Via the USB cable, the mouse’s circuitry receives power, initializes, and is recognized by the computer as a valid device. Then the driver software takes over, identifying the device as a mouse and not, say, a printer or a keyboard. Finally, a rapid succession of electrical messages traverses the cable, and these messages are translated into commands that then move the cursor smoothly across your computer screen. The fact that you don’t need to know any of this to operate a mouse is by design: The mouse’s computer chips and embedded software conceal the device’s complexity.

This was not an isolated case—indeed, it’s universal. So eight years ago, a few of us at the Air Force Research Laboratory (AFRL) set out to find a better way. Along with a small cadre of researchers from industry, government, and academia, we have been studying the example of the personal computer and “plug-and-play” concepts from other industries in search of lessons we could apply to the task of building better spacecraft. Traditionally, satellite designers strive to increase raw performance or system capabilities by turning to faster processors or more sophisticated sensors. But we took a very different approach, concentrating instead on slashing the time it takes to go from inception to launch. Our goal was, well, lofty: to build a working satellite in just six days.

Keep reading...Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

Video Friday: Humanoid Soccer

Your weekly selection of awesome robot videos

4 min read
Humans and human-size humanoid robots stand together on an indoor soccer field at the beginning of a game

Video Friday is your weekly selection of awesome robotics videos, collected by your friends at IEEE Spectrum robotics. We also post a weekly calendar of upcoming robotics events for the next few months. Please send us your events for inclusion.

CoRL 2022: 14–18 December 2022, AUCKLAND, NEW ZEALAND
ICRA 2023: 29 May–2 June 2023, LONDON

Enjoy today’s videos!

Keep Reading ↓Show less
Array of devices on a chip

This analog electrochemical memory (ECRAM) array provides a prototype for artificial synapses in AI training.

IBM research

How far away could an artificial brain be? Perhaps a very long way off still, but a working analogue to the essential element of the brain’s networks, the synapse, appears closer at hand now.

That’s because a device that draws inspiration from batteries now appears surprisingly well suited to run artificial neural networks. Called electrochemical RAM (ECRAM), it is giving traditional transistor-based AI an unexpected run for its money—and is quickly moving toward the head of the pack in the race to develop the perfect artificial synapse. Researchers recently reported a string of advances at this week’s IEEE International Electron Device Meeting (IEDM 2022) and elsewhere, including ECRAM devices that use less energy, hold memory longer, and take up less space.

Keep Reading ↓Show less

FAST Labs’ Cutting-Edge R&D Gets Ideas to the Field Faster

BAE Systems’ FAST Labs engineers turn breakthrough innovations into real-life impact

1 min read

FAST Labs is an R&D organization where research teams can invent and see their work come to life.

BAE Systems

This is a sponsored article brought to you by BAE Systems.

No one sets out to put together half a puzzle. Similarly, researchers and engineers in the defense industry want to see the whole picture – seeing their innovations make it into the hands of warfighters and commercial customers.

That desire is fueling growth at BAE Systems’ FAST Labs research and development (R&D) organization.

Keep Reading ↓Show less
{"imageShortcodeIds":[]}