The February 2023 issue of IEEE Spectrum is here!

Close bar

Minuscule Sensing Suite Is a Big Step Toward Robotic Gnats

Tiny flying robots need even tinier flying sensors

3 min read
A photo of three tiny black electronic components on a fingertip

An accelerometer, camera, and microprocessor make up the hardware of a sensing and autonomy system for tiny flying robots.

Sawyer B. Fuller

In the late 1980s, Rod Brooks and Anita Flynn published a paper in The Journal of the British Interplanetary Society with the amazing title of Fast, Cheap, and Out of Control: A Robotic Invasion of the Solar System. The paper explored the idea that instead of sending one big and complicated and extremely expensive robot to explore (say) the surface of Mars, you could instead send a whole bunch of little and simple and extremely cheap robots, while still accomplishing mission goals. The abstract of the paper concludes: “We suggest that within a few years it will be possible at modest cost to invade a planet with millions of tiny robots.”

That was 1989, and we’re still nowhere near millions of tiny robots. Some things are just really hard to scale down, and building robots that are the size of bees or flies or even gnats requires advances in (among other things) sensing for autonomy as well as appropriate power systems. But progress is being made, and Sawyer Fuller, assistant professor at the University of Washington (who knows a thing or four about insect-scale flying robots), has a new article inScience Robotics that shows how it’s possible to put together the necessary sensing hardware to enable stable, autonomous flight for flying robots smaller than a grain of rice.


For a tiny flying robot to be autonomous (or for any flying robot to be autonomous, really) it needs to be able to maintain its own stability, using sensors to keep track of where it is and make sure that it doesn’t go anywhere that it doesn’t want to go. This is especially tricky for small-scale flying robots, because they can be pushed around by air currents or turbulence that larger robots can simply ignore. But it turns out that being tiny also has some advantages: Because the drag of the air itself becomes more dominant the smaller an aircraft gets, an onboard gyroscope becomes irrelevant, and you just need an accelerometer. Tie that to an optic flow camera to track motion, along with a microcontroller to do the computation, and you have everything you need.

A photo of three tiny black electronic components on a US quarter, where each component is approximately the size of a letter on the coinSawyer B. Fuller

The camera in the picture above is, somewhat incredibly, available off the shelf. It’s designed primarily to explore your insides, which is why the entire camera is only 0.65 millimeters tall and wide, 1.2 mm long, and weighs 1 milligram (including its multi-element lens). The sensor on this particular camera exceeds the power budget that the researchers are targeting, probably because its intended use case does not involve tiny robots with tinier batteries, but there are existing sensors of a similar size that would work.

In total, this hardware weighs 6.2 mg and uses 167 microwatts of power, which in theory could be suitable for a 10-mg flying robot, something about the size of a chonky gnat. Figuring out whether it all actually works in practice isn’t easy, since chonky robotic gnats don’t exist, so the researchers instead used a palm-size drone running simulated sensors. Testing showed that the system was able to successfully estimate the attitude of the drone and also detect and reject disturbances from wind. In fact, its performance was comparable to that of an actual fruit fly, which is impressive considering how long the fruit fly has had to refine its design.

“Reducing drone size down to gnat scale only amplifies many of the benefits of insect scale,” Fuller says, “such as greater potential to harvest all needed energy from the environment and larger deployments.” Much like Brooks and Flynn’s vision for swarms of inexpensive robots, Fuller sees the kind of gnat-size robots that these sensors will help enable as a completely new approach to autonomous exploration. “Small flying robotic insects will revolutionize low-altitude atmospheric ‘air telemetry’—remote sensing of air composition and flow—by doing so on a much more detailed and persistent basis than is possible now. They will power themselves from the sun or indoor lighting—which favors small scale. The chemical sensor might be an insect antenna, which my group demonstrated in the ‘smellicopter.’ Applications include early detection of forest fires, pest onset in agriculture, buried explosives, or mapping hazardous volatiles to find leaks of greenhouse gases or the spread of airborne diseases.”

And if you find the whole “fast, cheap, and out of control” thing compelling and want to watch a very strange movie of the same name from 1997 featuring Rod Brooks, a lion tamer, a topiary artist, and a naked mole-rat expert, here you go.

The Conversation (3)
James Weller14 Dec, 2022

Towards end of article this is said "They will power themselves from the sun or indoor lighting—which favors small scale."

I'm not sure I understand, because the smaller the scale the smaller the surface area and the power from light will be dependent on surface area. If insects could get energy they need from light (like plants), why aren't there some doing just that? Maybe these artificial insects could unfold extremely light and relative large "wings" that would contain the appropriate collectors? I would be interested in understanding the power requirements for these "gnats."

2 Replies

The Bionic-Hand Arms Race

The prosthetics industry is too focused on high-tech limbs that are complicated, costly, and often impractical

12 min read
Horizontal
A photograph of a young woman with brown eyes and neck length hair dyed rose gold sits at a white table. In one hand she holds a carbon fiber robotic arm and hand. Her other arm ends near her elbow. Her short sleeve shirt has a pattern on it of illustrated hands.

The author, Britt Young, holding her Ottobock bebionic bionic arm.

Gabriela Hasbun. Makeup: Maria Nguyen for MAC cosmetics; Hair: Joan Laqui for Living Proof
DarkGray

In Jules Verne’s 1865 novel From the Earth to the Moon, members of the fictitious Baltimore Gun Club, all disabled Civil War veterans, restlessly search for a new enemy to conquer. They had spent the war innovating new, deadlier weaponry. By the war’s end, with “not quite one arm between four persons, and exactly two legs between six,” these self-taught amputee-weaponsmiths decide to repurpose their skills toward a new projectile: a rocket ship.

The story of the Baltimore Gun Club propelling themselves to the moon is about the extraordinary masculine power of the veteran, who doesn’t simply “overcome” his disability; he derives power and ambition from it. Their “crutches, wooden legs, artificial arms, steel hooks, caoutchouc [rubber] jaws, silver craniums [and] platinum noses” don’t play leading roles in their personalities—they are merely tools on their bodies. These piecemeal men are unlikely crusaders of invention with an even more unlikely mission. And yet who better to design the next great leap in technology than men remade by technology themselves?

Keep Reading ↓Show less