The December 2022 issue of IEEE Spectrum is here!

Close bar

The Race to Build a Real-Life Version of the “Star Trek” Tricorder

Can a $10 million prize turn a sci-fi device into real technology?

10 min read
Tatiana Rypinski, dressed in "Star Trek" gear, holds a replica tricorder
Tech From “Star Trek” Dressed in a Starfleet uniform, Tatiana Rypinski holds a replica tricorder during a photo shoot for the Qualcomm Tricorder XPrize. She leads one of the finalist teams in the competition.
Photo: XPRIZE

Tatiana Rypinski is maybe two bites into her salad when she realizes it’s time for her next meeting. She gets to her feet and heads to the Biomedical Engineering Design Studio, a hybrid of prototyping space, wet lab, and machine shop at the Johns Hopkins University’s Homewood campus, in Baltimore. Rypinski and a few of her colleagues gather near some worktables with power outlets dangling from the ceiling. A tool cart is in one corner, a microscope in another. Two 3-D printers sit idle along a wall. The students have agreed to meet me here to discuss their work on a project whose goal is not just inspired by science fiction—it actually comes straight out of “Star Trek.” They want to build a medical tricorder.

In 1966, “Star Trek” introduced the tricorder as, in essence, a plot device. Like the transporter, which could “beam” people between starships and planets without asking the audience to sit through lengthy landing sequences, the tricorder could rapidly diagnose medical conditions and suggest treatments, keeping the story moving. With a wave of this fictional device, a Starfleet crew member could get a comprehensive medical analysis without having to be admitted to the ship’s sick bay.

Keep reading...Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

Video Friday: Humanoid Soccer

Your weekly selection of awesome robot videos

4 min read
Humans and human-sized humanoid robots stand together on an indoor soccer field at the beginning of a game

Video Friday is your weekly selection of awesome robotics videos, collected by your friends at IEEE Spectrum robotics. We also post a weekly calendar of upcoming robotics events for the next few months. Please send us your events for inclusion.

CoRL 2022: 14–18 December 2022, AUCKLAND, NEW ZEALAND
ICRA 2023: 29 May–2 June 2023, LONDON

Enjoy today’s videos!

Keep Reading ↓Show less
Array of devices on a chip

This analog electrochemical memory (ECRAM) array provides a prototype for artificial synapses in AI training.

IBM research

How far away could be an artificial brain? Perhaps a very long way still, but a working analogue to the essential element of the brain’s networks, the synapse, appears closer at hand now.

That’s because a device that draws inspiration from batteries now appears surprisingly well suited to run artificial neural networks. Called electrochemical RAM (ECRAM), it is giving traditional transistor-based AI an unexpected run for its money—and is quickly moving toward the head of the pack in the race to develop the perfect artificial synapse. Researchers recently reported a string of advances at this week’s IEEE International Electron Device Meeting (IEDM 2022) and elsewhere, including ECRAM devices that use less energy, hold memory longer, and take up less space.

Keep Reading ↓Show less

NYU Biomedical Engineering Speeds Research from Lab Bench to Bedside

Intensive clinical collaboration is fueling growth of NYU Tandon’s biomedical engineering program

5 min read

This optical tomography device that can be used to recognize and track breast cancer, without the negative effects of previous imaging technology. It uses near-infrared light to shine into breast tissue and measure light attenuation that is caused by the propagation through the affected tissue.

A.H. Hielscher, Clinical Biophotonics Laboratory

This is a sponsored article brought to you by NYU’s Tandon School of Engineering.

When Andreas H. Hielscher, the chair of the biomedical engineering (BME) department at NYU’s Tandon School of Engineering, arrived at his new position, he saw raw potential. NYU Tandon had undergone a meteoric rise in its U.S. News & World Report graduate ranking in recent years, skyrocketing 47 spots since 2009. At the same time, the NYU Grossman School of Medicine had shot from the thirties to the #2 spot in the country for research. The two scientific powerhouses, sitting on opposite banks of the East River, offered Hielscher a unique opportunity: to work at the intersection of engineering and healthcare research, with the unmet clinical needs and clinician feedback from NYU’s world-renowned medical program directly informing new areas of development, exploration, and testing.

Keep Reading ↓Show less