The August 2022 issue of IEEE Spectrum is here!

Close bar

The Quest for the Spin Transistor

The mystical property of electron spin is revolutionizing the memory business. If it can do the same with logic, electronics will become "spintronics"

14 min read
The Quest for the Spin Transistor

From the earliest batteries through vacuum tubes, solid state, and integrated circuits, electronics has staved off stagnation. Engineers and scientists have remade it repeatedly, vaulting it over one hurdle after another to keep alive a record of innovation unmatched in industrial history.

It is a spectacular and diverse account through which runs a common theme. When a galvanic pile twitches a frog's leg, when a triode amplifies a signal, or when a microprocessor stores a bit in a random access memory, the same agent is at work: the movement of electric charge. Engineers are far from exhausting the possibilities of this magnificent mechanism. But even if a dead end is not yet visible, the foreseeable hurdles are high enough to set some searching for the physics that will carry electronics on to its next stage. In so doing, it could help up the ante in the semiconductor stakes, ushering in such marvels as nonvolatile memories with enormous capacity, ultrafast logic devices that can change function on the fly, and maybe even processors powerful enough to begin to rival biological brains.v A growing band of experimenters think they have seen the future of electronics, and it is spin. This fundamental yet elusive property of electrons and other subatomic particles underlies permanent magnetism, and is often regarded as a strange form of nano-world angular momentum.

Keep reading...Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

Artificial Synapses 10,000x Faster Than Real Thing

New protonic programmable resistors may help speed learning in deep neural networks

3 min read
Conceptual illustration shows a brain shape made of circuits on a multilayered chip structure.
Ella Maru Studio and Murat Onen

New artificial versions of the neurons and synapses in the human brain are up to 1,000 times smaller than neurons and at least 10,000 times faster than biological synapses, a study now finds.

These new devices may help improve the speed at which the increasingly common and powerful artificial intelligence systems known as deep neural networks learn, researchers say.

Keep Reading ↓Show less

Amazon to Acquire iRobot F​or $1.7 Billion

The deal will give the e-retail behemoth even more access to our homes

4 min read
A photo of an iRobot Roomba with an Amazon logo digitally added to it
Photo-illustration: iStockphoto/Amazon/IEEE Spectrum

This morning, Amazon and iRobot announced “a definitive merger agreement under which Amazon will acquire iRobot” for US $1.7 billion. The announcement was a surprise, to put it mildly, and we’ve barely had a chance to digest the news. But taking a look at what’s already known can still yield initial (if incomplete) answers as to why Amazon and iRobot want to team up—and whether the merger seems like a good idea.

Keep Reading ↓Show less

How New Storage Technologies Enhance HPC Systems

Different storage technologies can maximize the efficiency and effectiveness of HPC systems while providing high capacity and low latency storage, and minimizing network bandwidth and power consumption

1 min read
How New Storage Technologies Enhance HPC Systems

High-performance computing (HPC) has historically been available primarily to governments, research institutions, and a few very large corporations for modeling, simulation, and forecasting applications. As HPC platforms are being deployed in the cloud for shared services, high-performance computing is becoming much more accessible, and its use is benefiting organizations of all sizes. Increasing investment in the industrial internet of things (IIoT), artificial intelligence (AI), and electronic design automation (EDA) and silicon IP for engineering development are a few factors that are driving increased use of high-performance computing systems. In general, increasingly complex models for big data processing, simulation, and forecasting are driving a need for more compute power and greater storage capacity & performance.

This white paper highlights how different storage technologies can maximize the efficiency and effectiveness of HPC systems while providing high capacity and low latency storage, and minimizing network bandwidth and power consumption.