Technology Trends 2004

Biomolecular engineering is hot, the tech sector is turning around, and the United States will continue to dominate high-tech R and D in the coming decade. So say the IEEE Fellows in the second annual 2004 IEEE Technology Leaders Survey

12 min read

Some of the world's leading technological minds find much to like about the current course of high-tech R and D and the overall health of the technology sector. In IEEE Spectrum's second annual technology opinion survey, the IEEE Fellows--an elite group of men and women representing the cream of their professions--expect both job prospects and technology investment to pick up in the coming year [see chart, " Survey Says..."]. A decade from now, they expect things to look even better. Optimism reigns despite upheavals in the engineering workforce created by job migration and automation, which the Fellows believe on balance will have a positive effect on the world economy. As for which field and which part of the world will dominate in 10 years' time, the Fellows are unequivocal: biomolecular engineering, they said, will have a far greater impact on society than nanotechnology, megacomputing, or robotics, and the United States will remain the world's technology R and D leader.

The Fellows rendered their opinions in an 18-question survey, conducted over the Web in October and November [see sidebar, "How This Survey Was Conducted"]. The survey explored the Fellows' views on the Big Picture: their impressions about the health of their industry and region, which fields and parts of the globe they expect to take off and expand, and what effect labor trends will have on the global economy. The Fellows also weighed in on technology strategy and investment: how they evaluate new ideas and projects, whether they favor established companies or start-ups as sources of innovation, and which high-tech giants seem most in danger of being toppled. Fellows were also given the chance to qualify or amplify their views, or simply to hold forth.

Keep Reading ↓Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions
This photograph shows a car with the words “We Drive Solar” on the door, connected to a charging station. A windmill can be seen in the background.

The Dutch city of Utrecht is embracing vehicle-to-grid technology, an example of which is shown here—an EV connected to a bidirectional charger. The historic Rijn en Zon windmill provides a fitting background for this scene.

We Drive Solar

Hundreds of charging stations for electric vehicles dot Utrecht’s urban landscape in the Netherlands like little electric mushrooms. Unlike those you may have grown accustomed to seeing, many of these stations don’t just charge electric cars—they can also send power from vehicle batteries to the local utility grid for use by homes and businesses.

Debates over the feasibility and value of such vehicle-to-grid technology go back decades. Those arguments are not yet settled. But big automakers like Volkswagen, Nissan, and Hyundai have moved to produce the kinds of cars that can use such bidirectional chargers—alongside similar vehicle-to-home technology, whereby your car can power your house, say, during a blackout, as promoted by Ford with its new F-150 Lightning. Given the rapid uptake of electric vehicles, many people are thinking hard about how to make the best use of all that rolling battery power.

Keep Reading ↓Show less