The December 2022 issue of IEEE Spectrum is here!

Close bar

Takuo Aoyagi, Inventor of the Pulse Oximeter, Dies at Age 84

He received the 2015 IEEE Medal for Innovations in Healthcare Technology for his device, which helps monitor the progression of COVID-19

2 min read
Takuo Aoyagi
Photo: IEEE

THE INSTITUTE Takuo Aoyagi, the inventor of the pulse oximeter, died on 18 April at the age of 84. His invention—a medical device that can measure a person’s blood oxygen levels—is part of the standard of care for illnesses such as asthma, pneumonia, and lung cancer. It is also a key tool in monitoring the progression of COVID-19. A low oxygen level—or hypoxemia—is a symptom of the virus.

For his contributions to pulse oximetry, he was awarded the 2015 IEEE Medal for Innovations in Healthcare Technology.

IMPROVING FLAWED TECHNOLOGY

Aoyagi grew up in the Niigata Prefecture in Japan. His interest in science and engineering began when he was 9 years old. He became fascinated by theoriginal oximeter, which was invented by Glenn Allan Millikan in the early 1940s to warn military pilots fighting in World War II that their body was being deprived of oxygen. The device was integrated into the pilot's altitude mask and was clasped to the earlobe. The earpiece used a small incandescent bulb, filters to generate different wavelengths, and photocells to detect light. Oxygen levels could be determined by how much light passed through the earlobe.

According to an article on pulse oximetry in the journal Chest, early oximeters were cumbersome and required heating the earlobe, which could cause burns. Aoyagi devised an alternative way of measuring blood oxygen that did not suffer from these limitations.

He did this work at the electronic medical equipment manufacturer Nihon Kohden, in Tokyo, which he joined as a manager in the company’s R&D department in 1971.

In 1972, Aoyagi was investigating a noninvasive cardiac output device and discovered that arterial pulsatile “noise” interfering with the accurate dye dilution curve contains important information about the oxygenation of blood in a person’s arteries. A dye dilution curve is a graph of the concentrations of Evans Blue, a natural dye found in blood, as it is pumped into and away from the heart.

This discovery led Aoyagi to invent the pulse oximeter in 1975. His oximeter consists of a probe containing a light-emitting device and two photodetectors. It’s clamped onto a thin body part—typically a fingertip or earlobe. The oximeter passes two wavelengths of light through the body part to a photodetector on the other side. It measures the changing absorbance at each of the wavelengths, allowing the device to determine the absorbencies caused by the blood pulsing through the arteries. The oximeter rapidly and noninvasively assesses blood and respiratory problems in patients and allows clinicians to also detect heart abnormalities.

Aoyagi was granted a U.S. patent for the device in 1979. All of today’s oximeters are based on Aoyagi’s principles of pulse oximetry.

In 2007, the WHO deemed the pulse oximeter an essential device for reducing complications during operations and included it on its Surgical Safety Checklist.

The Conversation (0)

Get unlimited IEEE Spectrum access

Become an IEEE member and get exclusive access to more stories and resources, including our vast article archive and full PDF downloads
Get access to unlimited IEEE Spectrum content
Network with other technology professionals
Establish a professional profile
Create a group to share and collaborate on projects
Discover IEEE events and activities
Join and participate in discussions

Economics Drives Ray-Gun Resurgence

Laser weapons, cheaper by the shot, should work well against drones and cruise missiles

4 min read
In an artist’s rendering, a truck is shown with five sets of wheels—two sets for the cab, the rest for the trailer—and a box on the top of the trailer, from which a red ray is projected on an angle, upward, ending in the silhouette of an airplane, which is being destroyed

Lockheed Martin's laser packs up to 300 kilowatts—enough to fry a drone or a plane.

Lockheed Martin

The technical challenge of missile defense has been compared with that of hitting a bullet with a bullet. Then there is the still tougher economic challenge of using an expensive interceptor to kill a cheaper target—like hitting a lead bullet with a golden one.

Maybe trouble and money could be saved by shooting down such targets with a laser. Once the system was designed, built, and paid for, the cost per shot would be low. Such considerations led planners at the Pentagon to seek a solution from Lockheed Martin, which has just delivered a 300-kilowatt laser to the U.S. Army. The new weapon combines the output of a large bundle of fiber lasers of varying frequencies to form a single beam of white light. This laser has been undergoing tests in the lab, and it should see its first field trials sometime in 2023. General Atomics, a military contractor in San Diego, is also developing a laser of this power for the Army based on what’s known as the distributed-gain design, which has a single aperture.

Keep Reading ↓Show less