Synthetic Biology’s Hunt for the Genetic Transistor

How genetic circuits will unlock the true potential of bioengineering

10 min read
Synthetic Biology’s Hunt for the Genetic Transistor
Photo: Dan Saelinger; Stylist: Laurie Raab/Halley Resources; Makeup and Hair: Greg Clark/Halley Resources

In 1977, a small group of researchers in California changed the world when they wrangled a common gut bacterium into producing a human protein. Using every technique in the book—and inventing some of their own—they scavenged, snipped, and glued together genetic components to synthesize a tiny filament of DNA. They then inserted the new segment into some Escherichia coli cells, tricking them into making the human hormone somatostatin.

A year later, these scientists had an E. coli strain that produced insulin, an invaluable drug in the treatment of diabetes. With that, the era of biotechnology was born. A plethora of novel—or at least cheaper—drugs seemed to loom on the horizon.

Keep reading...Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

"SuperGPS" Accurate to 10 Centimeters or Better

New optical-wireless hybrid makes use of existing telecommunications infrastructure

3 min read
illustration of man looking at giant smart phone with map and red "you are here" symbol
iStock

Modern life now often depends on GPS(short for Global Positioning System), but it can err on the order of meters in cities. Now a new study from a team of Dutch researchers reveals a terrestrial positioning system based on existing telecommunications networks can deliver geolocation info accurate to within 10 centimeters in metropolitan areas.

The scientists detailed their findings 16 November in the journal Nature.

Keep Reading ↓Show less
Close-up of a colorful semiconductor wafer held the white gloved hands of a clean room technician.

A 300-millimeter wafer from a GlobalFoundries fab in Dresden is full of advanced transistors. The industry will need to continue to produce more and better devices, argues the author.

Liesa Johannssen-Koppitz/Bloomberg/Getty Images

This is a guest post in recognition of the 75th anniversary of the invention of the transistor. It is adapted from an essay in the July 2022 IEEE Electron Device Society Newsletter. The views expressed here are solely those of the author and do not represent positions of IEEE Spectrum or the IEEE.

On the 75th anniversary of the invention of the transistor, a device to which I have devoted my entire career, I’d like to answer two questions: Does the world need better transistors? And if so, what will they be like?

Keep Reading ↓Show less
{"imageShortcodeIds":[]}

NYU Biomedical Engineering Speeds Research from Lab Bench to Bedside

Intensive clinical collaboration is fueling growth of NYU Tandon’s biomedical engineering program

5 min read

This optical tomography device that can be used to recognize and track breast cancer, without the negative effects of previous imaging technology. It uses near-infrared light to shine into breast tissue and measure light attenuation that is caused by the propagation through the affected tissue.

A.H. Hielscher, Clinical Biophotonics Laboratory

This is a sponsored article brought to you by NYU’s Tandon School of Engineering.

When Andreas H. Hielscher, the chair of the biomedical engineering (BME) department at NYU’s Tandon School of Engineering, arrived at his new position, he saw raw potential. NYU Tandon had undergone a meteoric rise in its U.S. News & World Report graduate ranking in recent years, skyrocketing 47 spots since 2009. At the same time, the NYU Grossman School of Medicine had shot from the thirties to the #2 spot in the country for research. The two scientific powerhouses, sitting on opposite banks of the East River, offered Hielscher a unique opportunity: to work at the intersection of engineering and healthcare research, with the unmet clinical needs and clinician feedback from NYU’s world-renowned medical program directly informing new areas of development, exploration, and testing.

Keep Reading ↓Show less