Superconductor Maker In Political Crosshairs

Congressional inquiry could jeopardize bold New York City grid project

4 min read

Since the discovery 20 years ago of high-temperature superconductors (HTSs)--materials that could conduct without resistance at temperatures attainable with liquid nitrogen--the most exciting and far-reaching applications have been expected in electricity. And for many years, the most hard-charging, technically smart company developing HTSs for power has been American Superconductor Corp. (AMSC) of Westborough, Mass. So there's been a stir over the disclosure that AMSC is under investigation by the office of Representative John Dingell, a Democratic congressman from Michigan, one of the most influential U.S. legislators, and an aggressive inquisitor.

The incident that aroused Dingell's suspicions was the award in 2006 by the U.S. Department of Homeland Security of a multimillion-dollar no-bid contract to AMSC to develop and test what it's calling Secure Super Grids in New York City. Working with the local utility Consolidated Edison Co., AMSC plans to develop and install superconducting cables that would connect substations in a much tighter mesh, so that if stations or feeder cables fail, power can be instantly rerouted. Feeder cable failures were implicated in the 1999 and 2006 New York City neighborhood blackouts.

Keep Reading ↓Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions
This photograph shows a car with the words “We Drive Solar” on the door, connected to a charging station. A windmill can be seen in the background.

The Dutch city of Utrecht is embracing vehicle-to-grid technology, an example of which is shown here—an EV connected to a bidirectional charger. The historic Rijn en Zon windmill provides a fitting background for this scene.

We Drive Solar

Hundreds of charging stations for electric vehicles dot Utrecht’s urban landscape in the Netherlands like little electric mushrooms. Unlike those you may have grown accustomed to seeing, many of these stations don’t just charge electric cars—they can also send power from vehicle batteries to the local utility grid for use by homes and businesses.

Debates over the feasibility and value of such vehicle-to-grid technology go back decades. Those arguments are not yet settled. But big automakers like Volkswagen, Nissan, and Hyundai have moved to produce the kinds of cars that can use such bidirectional chargers—alongside similar vehicle-to-home technology, whereby your car can power your house, say, during a blackout, as promoted by Ford with its new F-150 Lightning. Given the rapid uptake of electric vehicles, many people are thinking hard about how to make the best use of all that rolling battery power.

Keep Reading ↓Show less