Stopping Hardware Trojans in Their Tracks

A few adjustments could protect chips against malicious circuitry

14 min read
Stopping Hardware Trojans in Their Tracks
Photo: Adam Voorhes

img of Trojan HorsePhoto: Adam Voorhes; Prop Stylist: Robin Finlay

Long ago, the story goes, Greek soldiers tried for 10 years to conquer the city of Troy. Eventually, they departed, leaving behind a large wooden horse, apparently as a gift. The Trojans pulled the beautiful tribute inside. Later, a group of Greek soldiers slipped out of the horse and opened the gates for their compatriots, who easily sacked the sleeping city.

Keep reading...Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

Emmy Award Winner’s Algorithms Bring High-Quality Video to Your TV

He is working on making high-res images for the metaverse

5 min read
portrait of Alan Bovik
Alan Bovik

Alan Conrad Bovik’s passion for science fiction inspired him to pursue a career in engineering. His favorite sci-fi authors when he was young were Arthur C. Clarke, who penned 2001: A Space Odyssey, and Isaac Asimov, author of the Foundation series. Bovik says they wrote from a “very scientific point of view”—which made him want to help develop aerospace technology that would send humans “to other worlds.”

But he decided to study nuclear engineering in school—which then seemed like the future of energy. He discovered, however, that he didn't like the subject because it “required too much chemistry and memorization,” he says with a laugh. When he took a course in computer programming, he fell in love with it and ended up changing his major to computer engineering.

Keep Reading ↓Show less

Stretchable Artificial Nerves Help Restore Motion in Mice

New neuroprosthetic approach is more flexible and less power hungry than other designs

2 min read
illustration of a paralyzed mouse and a moving mouse

A paralyzed mouse with a spinal cord injury or motor-neuron disease [left] and a mouse that has recovered voluntary motor function by using stretchable artificial nerves [right].

Stanford University

Conventional neuroprosthetic devices that aim to help patients bypass nerve damage are often rigid and power hungry. Now scientists have developed stretchable artificial nerves that helped paralyzed mice run on a treadmill and kick a ball while consuming less than one-hundredth of the power of a typical microprocessor. The scientists suggest these artificial nerves may one day be used in the human body.

To help restore movement to patients who have suffered nerve damage from injuries or diseases, scientists are researching neuroprosthetic devices that can help relay signals from the brain to muscles or nerves. However, these systems often face a number of critical limitations, says study co–senior author Tae-Woo Lee, a materials scientist at Seoul National University.

Keep Reading ↓Show less

Accelerate Time to Market with Calibre nmLVS Recon Technology: A New Paradigm for Circuit Verification

Improve LVS circuit verification productivity in early-stage SoC integration and reduce time to market

1 min read
Accelerate Time to Market with Calibre nmLVS Recon Technology: A New Paradigm for Circuit Verification

One thing is clear…tapeouts are getting harder, and taking longer. As part of a growing suite of innovative early-stage design verification technologies, the Calibre nmLVS Recon tool enables design teams to rapidly examine dirty and immature designs to find and fix high-impact circuit errors earlier and faster, leading to an overall reduction in tapeout schedules and time to market.

Learn more in this technical paper.