From orbiting lasers to metal rods that strike from the heavens, the potential to wage war from space raises startling possibilities and serious problems

26 min read
Illustration of space-based lasers destroying targets
Illustration: John MacNeill

Illustration of space-based lasers destroying targets Light Saber: Space-based lasers would destroy targets by heating them with a powerful beam generated by a chemical reaction between hydrogen and fluorine. However, many such lasers would be required for global coverage; clouds and smoke block the beam; and keeping the beam on target long enough to cause damage is difficult. Illustration: John MacNeill

12 June 2018—The world awakens to an international crisis: officials at the Tokyo airport have detained a foreign airliner suspected of carrying illegal arms. The aggressive and threatening response from the plane’s country of origin, a “rogue” state believed to possess both nuclear and biological weapons, adds credibility to the suspicion. Hamstrung by its rogue status, the country’s economy has been in free fall for decades, and with this latest incident, it’s widely feared that the country will launch a nuclear attack against Japan. U.S. satellites report escalating activity at the country’s rocket-launch facility; other U.S. intelligence indicates that three intermediate-range missiles are being fueled and are within a 15-minute launch window. No air-, sea-, or land-based military system is available to respond in time. The U.S. president demands that the country cease and desist immediately but receives no response. Five minutes later, the U.S. Strategic Command activates a heretofore undisclosed space-based laser; within minutes, it incinerates the launch facility’s command and control center, thus narrowly averting a catastrophe.

Keep reading... Show less

Stay ahead of the latest trends in technology. Become an IEEE member.

This article is for IEEE members only. Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

Video Friday: Drone in a Cage

Your weekly selection of awesome robot videos

3 min read
A drone inside of a protective geometric cage flies through a dark rain

Video Friday is your weekly selection of awesome robotics videos, collected by your friends at IEEE Spectrum robotics. We also post a weekly calendar of upcoming robotics events for the next few months. Please send us your events for inclusion.

ICRA 2022: 23 May–27 May 2022, PHILADELPHIA
IEEE ARSO 2022: 28 May–30 May 2022, LONG BEACH, CALIF.
RSS 2022: 21 June–1 July 2022, NEW YORK CITY
ERF 2022: 28 June–30 June 2022, ROTTERDAM, NETHERLANDS
RoboCup 2022: 11 July–17 July 2022, BANGKOK
IEEE CASE 2022: 20 August–24 August 2022, MEXICO CITY
CLAWAR 2022: 12 September–14 September 2022, AZORES, PORTUGAL

Enjoy today’s videos!

Keep Reading ↓ Show less

Remembering 1982 IEEE President Robert Larson

He was a supporter of several IEEE programs including Smart Village

3 min read
A photo of two men in suits.  One behind the other.

Robert Larson [left] with IEEE Life Fellow Eric Herz, who served as IEEE general manager and executive director.

IEEE History Center

Robert E. Larson, 1982 IEEE president, died on 10 March at the age of 83.

An active volunteer who held many high-level positions throughout the organization, Larson was the 1975–1976 president of the IEEE Control Systems Society and also served as IEEE Foundation president.

Keep Reading ↓ Show less

Why Battery Energy Storage Is Moving to Higher DC Voltages

Download this free whitepaper to learn how battery energy storage up to 1500 VDC can deliver power efficiencies and cost reductions

1 min read

The explosive growth of the battery energy storage industry has created a need for higher DC voltages in utility-scale applications.

Download this free whitepaper and learn how you can achieve a smooth transfer of power, efficiencies and cost reductions with battery energy storage system components up to1500 VDC.