Special Report: Top Tech 2021

After months of blood, toil, tears, and sweat, we can all expect a much better year

1 min read
Photo illustration of the crystal ball with a smile on it.
Photo-illustration: Edmon de Haro

Last January in this space we wrote that “technology doesn't really have bad years." But 2020 was like no other year in recent memory: Just about everything suffered, including technology. One shining exception was biotech, with the remarkably rapid development of vaccines capable of stemming the COVID-19 pandemic.

This year's roundup of anticipated tech advances includes an examination of the challenges in manufacturing these vaccines. And it describes how certain technologies used widely during the pandemic will likely have far-reaching effects on society, even after the threat subsides. You'll also find accounts of technical developments unrelated to the pandemic that the editors of IEEE Spectrum expect to generate news this year.

Making such predictions is, of course, risky. We trust, though, that whatever we may have missed won't possibly be as momentous as the earthshaker that we—indeed the whole world—didn't see coming 12 months ago.

See all stories from our Top Tech 2021 Special Report

The Conversation (0)

The James Webb Space Telescope was a Career-Defining Project for Janet Barth

NASA’s first female engineering chief was there from conception to first light

5 min read
portrait of older woman in light blue jacket against dark gray background Info for editor if needed:
Sue Brown

Janet Barth spent most of her career at the Goddard Space Flight Center, in Greenbelt, Md.—which put her in the middle of some of NASA’s most exciting projects of the past 40 years.

She joined the center as a co-op student and retired in 2014 as chief of its electrical engineering division. She had a hand in Hubble Space Telescope servicing missions, launching the Lunar Reconnaissance Orbiter and the Magnetospheric Multiscale mission, and developing the James Webb Space Telescope.

Keep Reading ↓Show less

A Diamond “Blanket” Can Cool the Transistors Needed for 6G

Gallium nitride transistors have struggled to handle the thermal load of high-frequency electronics

4 min read
blue mountain of crystals with an inset of molecules on a pink background
Srabanti Chowdhury/Stanford

High-power radio-frequency electronics are a hot commodity, both figuratively and literally. The transistors needed to amplify 5G and future 6G signals are struggling to handle the thermal load, causing a bottleneck in development. Engineers in the United States and England have teamed up to demonstrate a promising solution—swaddling individual transistors in a blanket of thermally conductive diamond to keep them cool.

“Thermal issues are currently one of the biggest bottlenecks that are plaguing any kind of microelectronics,” says team lead Srabanti Chowdhury, professor of electrical engineering at Stanford University. “We asked ourselves, ‘Can we perform device cooling at the very material level without paying a penalty in electrical performance?’”

Keep Reading ↓Show less

Get the Coursera Campus Skills Report 2022

Download the report to learn which job skills students need to build high-growth careers

1 min read

Get comprehensive insights into higher education skill trends based on data from 3.8M registered learners on Coursera, and learn clear steps you can take to ensure your institution's engineering curriculum is aligned with the needs of the current and future job market. Download the report now!