The August 2022 issue of IEEE Spectrum is here!

Close bar

Solar-Cell Squabble

Organic photovoltaics could be dirt cheap, but their efficiency is in dispute

9 min read
Solar-Cell Squabble
Illustration: Greg Mably

For a while, 2007 looked to be the year when organic photovoltaic (PV) technology would finally come into its own. Reports from leading research labs claimed record-setting breakthroughs in performance. Meanwhile, the U.S. Department of Energy (DOE) began welcoming investigators working on organic PV to compete for its mainstream solar-research grants, and venture capitalists invested tens of millions of dollars in organic PV development firms like Konarka Technologies, in Lowell, Mass., and Plextronics, in Pittsburgh.

Spurring all this interest was the promise of a much cheaper and more versatile source of solar power. Unlike traditional semiconductors such as silicon, this newer class of PV employs carbon-based plastics, dyes, and nanostructures and can be manufactured via a printing process that would be far cheaper than the high-temperature vacuum processing used for inorganics. Organic PV is also much more flexible and lighter in weight than inorganics, suggesting an enormous range of uses, including portable battery chargers and power-producing coatings for roofing shingles, tents, and vehicles.

Keep reading...Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

Artificial Synapses 10,000x Faster Than Real Thing

New protonic programmable resistors may help speed learning in deep neural networks

3 min read
Conceptual illustration shows a brain shape made of circuits on a multilayered chip structure.
Ella Maru Studio and Murat Onen

New artificial versions of the neurons and synapses in the human brain are up to 1,000 times smaller than neurons and at least 10,000 times faster than biological synapses, a study now finds.

These new devices may help improve the speed at which the increasingly common and powerful artificial intelligence systems known as deep neural networks learn, researchers say.

Keep Reading ↓Show less

Amazon to Acquire iRobot F​or $1.7 Billion

The deal will give the e-retail behemoth even more access to our homes

4 min read
A photo of an iRobot Roomba with an Amazon logo digitally added to it
Photo-illustration: iStockphoto/Amazon/IEEE Spectrum

This morning, Amazon and iRobot announced “a definitive merger agreement under which Amazon will acquire iRobot” for US $1.7 billion. The announcement was a surprise, to put it mildly, and we’ve barely had a chance to digest the news. But taking a look at what’s already known can still yield initial (if incomplete) answers as to why Amazon and iRobot want to team up—and whether the merger seems like a good idea.

Keep Reading ↓Show less

A Multiphysics Approach to Designing Fuel Cells for Electric Vehicles

White paper on fuel cell modeling and simulation

1 min read
Comsol Logo
Comsol

Fuel cell electric vehicles (FCEVs) often reach higher energy density and exhibit greater efficiency than battery EVs; however, they also have high manufacturing costs, limited service life, and relatively low power density.

Modeling and simulation can improve fuel cell design and optimize EV performance. Learn more in this white paper.