Smart Grid Education

Illinois Institute of Technology seeks lure recruits at all educational levels

2 min read
Smart Grid Education

Mel Olken and his team at IEEE Power & Energy magazine have outdone themselves this month with an exceptional issue about collaboration between the state of Illinois and the Republic of Korea in smart grid technology. The opener is devoted to a far-sighted initiative by the Illinois Institute of Technology to meet future engineering needs.

With an initial grant of $5 million from the U.S. Department of Energy, the Chicago polytechnic has established the IIT Smart Grid Education and Workforce Training Center. The aim is to mobilize energy companies, labor unions, pre-college educators, community colleges, and universities to arouse interest among young people in the smart grid and recruit some of them for advanced training.

As the article spells out, the need is urgent. Each year U.S. colleges graduate about 800-1,000 engineering students who have expressed interest in electric power, and about 550 graduate students obtain advanced degrees in power engineering. Yet electric utilities are expected to need 7,000 newly minted engineers in the next five years, and total industrial and governmental demand could be twice that.

The problem begins, according to surveys cited in the article, in kindergarten. By the time most pupils get to high school, they know little about engineering and are not equipped mathematically  and scientifically to pursue advanced education in the field. So IIT, teaming up with Argonne National Laboratory and community colleges, is starting with preparation of units geared to pre-college students.

This is not all. The IIT initiative is evolving in the context of a broader collaboration between Illinois and South Korea described in a second article in Power & Energy. A third article describes a Korean national program "laying the foundation for a low-carbon green-growth economy by building a smart grid." A third article describes how Korea and Illinois are jointly exploring community sustainability initiatives, and a fourth discusses "smart renewable energy development" in Korea.

The Conversation (0)
This photograph shows a car with the words “We Drive Solar” on the door, connected to a charging station. A windmill can be seen in the background.

The Dutch city of Utrecht is embracing vehicle-to-grid technology, an example of which is shown here—an EV connected to a bidirectional charger. The historic Rijn en Zon windmill provides a fitting background for this scene.

We Drive Solar

Hundreds of charging stations for electric vehicles dot Utrecht’s urban landscape in the Netherlands like little electric mushrooms. Unlike those you may have grown accustomed to seeing, many of these stations don’t just charge electric cars—they can also send power from vehicle batteries to the local utility grid for use by homes and businesses.

Debates over the feasibility and value of such vehicle-to-grid technology go back decades. Those arguments are not yet settled. But big automakers like Volkswagen, Nissan, and Hyundai have moved to produce the kinds of cars that can use such bidirectional chargers—alongside similar vehicle-to-home technology, whereby your car can power your house, say, during a blackout, as promoted by Ford with its new F-150 Lightning. Given the rapid uptake of electric vehicles, many people are thinking hard about how to make the best use of all that rolling battery power.

Keep Reading ↓Show less