The December 2022 issue of IEEE Spectrum is here!

Close bar

Self-Parking

Carmakers keep trying to simplify the experience

2 min read
Self-Parking
Illustration: mckibillo

The first time I tried parallel parking in a manual-shift car, I got halfway into a spot, nose first, on a sloping cobblestone street in a Pyrenean village before I realized I did not know how to put the car in reverse. I emerged in shame to ask a local for help. My impromptu valet found the ring I had to lift on the shift to put it in reverse gear. He also noted that it would be easier to back into the spot.

Lesson learned. But it is now moot: Last year, a car appeared on the market with a button on the dashboard that could be my next valet. Parking assistance has been street legal since 2003, when Toyota rolled out a Prius model in Japan with the ability to take over steering into a parallel-parking spot. Drivers had to select the parking spot on a dashboard video screen and then operate the gears, accelerator, and brake while the car did the steering. Since then, almost a dozen competitors have introduced parking assistance systems with growing sophistication.

Most rely on wide-angle optical cameras that identify a parking space and ultrasonic sensors for close-in obstacle detection. They can now park parallel or perpendicular, as in a parking garage. Some move faster and some move slower. BMW announced at the September Frankfurt Motor Show that its brand-new i3 would be the first car on the commercial market to give the driver a fully automatic parking option. The i3 system relies on ultrasound sensors to detect parking spots. A display screen offers the potential spot to the driver, who can then approve the choice and take his or her hands off the wheel and feet off the pedals while the car parks. The driver must hold down a button to show that he or she is paying attention, or the car will stop. 

Other carmakers have been showing off driverless parking prototypes too. Some differ from the BMW system in that they rely on communications via a wireless network with infrastructure in a parking garage to navigate to a parking spot. (See this 2009 peek at a Volkswagen demonstration in IEEE Spectrum’s Automaton blog or this Audi demo from the January 2013 Consumer Electronics Show.) These “vehicle-to-infrastructure,” or V2I, systems may offer more sophistication. But as reviewers at Edmunds found in a head-to-head comparison of Toyota’s and Ford’s 2010 hands-off, feet-on parking assistants, simpler interfaces may win over sophisticated ones. For now, BMW’s i3 one-button Park Assistant is the simplest interface of them all.

Virtual Valets

MakerExtent of production self-parking
Audi/Volkswagen Hands-off, feet-on; experimental vehicle-to-infrastructure (V2I) communication
BMW Hands-off, feet-on
Chevrolet Hands-off, feet-on
FordHands-off, feet-on
Honda V2I
Mercedes-Benz Hands-off, feet-on
Nissan Hands-off, feet-on
Toyota/Lexus Hands-off, feet-on
Volvo Hands-off, feet-on; experimental V2I
The Conversation (0)

How PostScript Kickstarted Desktop Publishing

Adobe’s PostScript became the heart of the digital printing press

8 min read
An illustration consisting of a spiral of calligraphy-style lettering that repeatedly spells the word “infinity”.

“Infinity Circle,” by Xerox PARC researcher Scott Kim, was made using JaM, predecessor to PostScript.

Adobe

The story of PostScript has many different facets. It is a story about profound changes in human literacy as well as a story of trade secrets within source code. It is a story about the importance of teams and of geometry. And it is a story of the motivations and educations of engineer-entrepreneurs.

The Computer History Museum is excited to publicly release, for the first time, the source code for the breakthrough printing technology, PostScript. (Register to download the code here.) We thank Adobe for the company’s permission and support, and Adobe cofounder John Warnock for championing this release.

Keep Reading ↓Show less

NYU Researchers Pave the Way for Future Shared Mobility

The C2SMART Center at NYU is tackling the most pressing issues in urban transportation

5 min read
E-scooters

NYU researchers led by civil and urban engineering professor Joseph Chow are working in the area of micromobility, a category of transit that includes electric bicycles and scooters, which has grown in popularity in cities around the world.

Shutterstock

This is a sponsored article brought to you by NYU Tandon School of Engineering.

The collection of technologies and markets that comprise so-called "shared mobility" now constitutes a $60 billion market, according to some estimates. This enormous growth has at least in part been driven by the aim of reducing vehicle carbon emissions to address climate change concerns.

Keep Reading ↓Show less