The December 2022 issue of IEEE Spectrum is here!

Close bar

San Diego Installs Smart Streetlights to Monitor the Metropolis

Sensor-laden streetlights will spot parking spaces, listen for gunshots, and track air pollution

4 min read
Illustration: MCKIBILLO
Illustration: MCKIBILLO

None of the people walking around San Diego’s East Village neighborhood one recent afternoon were looking up at the streetlights (except me). And if they had, they likely wouldn’t have noticed that some of these lights were a little thicker around the middle than others, or that some lanterns topping old-style lampposts had a clear glass panel here and there.

But unbeknownst to the people below, those streetlights were looking—and listening—all around them, while also monitoring temperature, humidity, and other characteristics of the air.

Keep reading...Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

Practical Solid-State Batteries Using Pressure

Mechanical stress exploits workaround to electrochemical failure

4 min read
Illustration shows a grey disk  with two metal circles on each end and a thin piece of metal attached to each. Thin grey strips branch out of one of them. Above and below the disk are illustrative red arrows facing the disk.

Researchers solved a problem facing solid-state lithium batteries, which can be shorted out by metal filaments called dendrites that cross the gap between metal electrodes. They found that applying a compression force across a solid electrolyte material (gray disk) caused the dendrite (dark line at left) to stop moving from one electrode toward the other (the round metallic patches at each side) and instead veer harmlessly sideways, toward the direction of the force.

MIT

Solid-state lithium-ion batteries promise to prove more safe, lightweight, and compact than their conventional counterparts. However, metal spikes can grow inside them, leading to short-circuit breakdowns. Now a new study finds that applying pressure on these batteries may prove a simple way to prevent such failures.

Conventional batteries supply electricity via chemical reactions between two electrodes, the anode and cathode, which typically interact through liquid or gel electrolytes. Solid-state batteries instead employ solid electrolytes such as ceramics.

Keep Reading ↓Show less

IEEE President’s Note: Looking to 2050 and Beyond

The importance of future-proofing IEEE

4 min read
Photo of K. J. Ray Liu
IEEE

What will the future of the world look like? Everything in the world evolves. Therefore, IEEE also must evolve, not only to survive but to thrive.

How will people build communities and engage with one another and with IEEE in the future? How will knowledge be acquired? How will content be curated, shared, and accessed? What issues will influence the development of technical standards? How should IEEE be organized to be most impactful?

Keep Reading ↓Show less

Learn How Global Configuration Management and IBM CLM Work Together

In this presentation we will build the case for component-based requirements management

2 min read

This is a sponsored article brought to you by 321 Gang.

To fully support Requirements Management (RM) best practices, a tool needs to support traceability, versioning, reuse, and Product Line Engineering (PLE). This is especially true when designing large complex systems or systems that follow standards and regulations. Most modern requirement tools do a decent job of capturing requirements and related metadata. Some tools also support rudimentary mechanisms for baselining and traceability capabilities (“linking” requirements). The earlier versions of IBM DOORS Next supported a rich configurable traceability and even a rudimentary form of reuse. DOORS Next became a complete solution for managing requirements a few years ago when IBM invented and implemented Global Configuration Management (GCM) as part of its Engineering Lifecycle Management (ELM, formerly known as Collaborative Lifecycle Management or simply CLM) suite of integrated tools. On the surface, it seems that GCM just provides versioning capability, but it is so much more than that. GCM arms product/system development organizations with support for advanced requirement reuse, traceability that supports versioning, release management and variant management. It is also possible to manage collections of related Application Lifecycle Management (ALM) and Systems Engineering artifacts in a single configuration.

Keep Reading ↓Show less