Robotic Vision gets Sharper

New image sensor technology will let robots see in shadow

3 min read

4 March 2005--For a robot monitoring the periphery of an airport or a chemical plant, it's crucial that it be able to see intruders lurking in shadows. While human eyes are exceptionally good at deciphering such hidden details, robots don't have that edge--yet. Researchers at Intrigue Technologies Inc., in Pittsburgh, are hoping to level the playing field by developing a new image sensor that works more like the retina in a human eye than current sensors and will allow robots to see better in natural lighting.

In the controlled environment of the factory floor, where robots are most often found, light falls uniformly on objects, so their image sensors don't have to capture a wide range of light intensities. Outside in natural light however, an imaging device must contend with shadows and sunlight; conventional sensors, such as those in digital cameras, can't capture pictures well under these conditions. Areas in bright light get washed out, whereas areas falling in a shadow become too dark to show details. "A camera could capture bright images if the shutter speed was faster [for less exposure]," says Vladimir Brajovic, the president and CEO of Intrigue, which grew out of his work at The Robotics Institute at Carnegie Mellon University, in Pittsburgh. "Similarly it could capture shadows if it was exposed longer. But a conventional sensor cannot simultaneously capture both."

Keep Reading ↓Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

Restoring Hearing With Beams of Light

Gene therapy and optoelectronics could radically upgrade hearing for millions of people

13 min read
A computer graphic shows a gray structure that’s curled like a snail’s shell. A big purple line runs through it. Many clusters of smaller red lines are scattered throughout the curled structure.

Human hearing depends on the cochlea, a snail-shaped structure in the inner ear. A new kind of cochlear implant for people with disabling hearing loss would use beams of light to stimulate the cochlear nerve.

Lakshay Khurana and Daniel Keppeler
Blue

There’s a popular misconception that cochlear implants restore natural hearing. In fact, these marvels of engineering give people a new kind of “electric hearing” that they must learn how to use.

Natural hearing results from vibrations hitting tiny structures called hair cells within the cochlea in the inner ear. A cochlear implant bypasses the damaged or dysfunctional parts of the ear and uses electrodes to directly stimulate the cochlear nerve, which sends signals to the brain. When my hearing-impaired patients have their cochlear implants turned on for the first time, they often report that voices sound flat and robotic and that background noises blur together and drown out voices. Although users can have many sessions with technicians to “tune” and adjust their implants’ settings to make sounds more pleasant and helpful, there’s a limit to what can be achieved with today’s technology.

Keep Reading ↓Show less
{"imageShortcodeIds":[]}