Robert Malkin: MacGyvering Medical Gear

He is inspiring students to tackle urgent problems in the developing world

5 min read
Robert Malkin: MacGyvering Medical Gear
Photo: D. L. Anderson

It’s 1989. Five years after earning his bachelor’s degree in electrical engineering, Robert Malkin is designing cardiac pacemakers in Switzerland. It’s an important job, and he’s developing deep expertise and earning good money. But he’s unhappy. Very unhappy. “I decided I didn’t want to be an engineer,” he says. “Actually, I didn’t want to work anymore, period. I had a party, burned my time card, and disappeared into the sunset.”

Disappeared into the sunrise is more like it. Malkin headed southeast to Thailand, where he signed up with a YMCA-sponsored team that was trying to get poor Thai parents to stop selling their daughters into that country’s booming sex trade. “It was more or less sexual slavery,” says Malkin. “Despite being immoral and illegal, it was happening in large numbers.”

Keep reading... Show less

Stay ahead of the latest trends in technology. Become an IEEE member.

This article is for IEEE members only. Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

Trilobite-Inspired Camera Boasts Huge Depth of Field

New camera relies on "metalenses" that could be fabricated using a standard CMOS foundry

3 min read
Black and white image showing different white box shapes in rows

Scanning electron microscope image of the titanium oxide nanopillars that make up the metalens. The scale is 500 nanometers (nm).

NIST

Inspired by the eyes of extinct trilobites, researchers have created a miniature camera with a record-setting depth of field—the distance over which a camera can produce sharp images in single photo. Their new study reveals that with the aid of artificial intelligence, their device can simultaneously image objects as near as 3 centimeters and as far away as 1.7 kilometers.

Five hundred million years ago, the oceans teemed with horseshoe-crab-like trilobites. Among the most successful of all early animals, these armored invertebrates lived on Earth for roughly 270 million years before going extinct.

Keep Reading ↓ Show less

Damaged Hearts Next in Line for Powerful mRNA Therapies

COVID-19 vaccine technology now points toward repairing ravages of heart attacks

3 min read
Light and dark pink sections of a microscopic view of heart tissue

Light micrograph of a section through the endocardium, the membrane that lines the heart (across top), following a heart attack. Necrotic (dead) muscle fibres (across bottom) have stained a deeper red, but their nuclei no longer stain.

CNRI/Science Source

The messenger RNA COVID-19 vaccines, including ones made by Moderna and Pfizer, notched some famous successes and pioneered the use of mRNA technology along the way. Now, scientists are applying testing similar technologies as treatments for a variety of conditions, including heart injury. New research presented in April at the Frontiers in CardioVascular Biomedicine 2022 conference shows that mRNA can help heart cells regenerate after being damaged from a heart attack—and has the potential to be an effective therapy. Other recent research treating cardiac injury using similar approaches has also shown promise. Should these treatments be effective in people, they would be among the first to heal damage after a heart attack, which current treatments for heart attack don't really do.

“A real solution is not provided to the patient,” said Dr. Maria Clara Labonia, a medical doctor and Ph.D student at the University of Utrecht in the Netherlands who is the lead author of the study. “So many aims are towards new therapeutic strategies.”

Keep Reading ↓ Show less

Modeling Microfluidic Organ-on-a-Chip Devices

Register for this webinar to enhance your modeling and design processes for microfluidic organ-on-a-chip devices using COMSOL Multiphysics

1 min read
Comsol Logo
Comsol

If you want to enhance your modeling and design processes for microfluidic organ-on-a-chip devices, tune into this webinar.

You will learn methods for simulating the performance and behavior of microfluidic organ-on-a-chip devices and microphysiological systems in COMSOL Multiphysics. Additionally, you will see how to couple multiple physical effects in your model, including chemical transport, particle tracing, and fluid–structure interaction. You will also learn how to distill simulation output to find key design parameters and obtain a high-level description of system performance and behavior.

Keep Reading ↓ Show less