These Inflatable Pouch Motors Will Make Building Robots as Easy as Using Stickers

If you can put a sticker on an origami, you can build yourself some cool little robots

2 min read
These Inflatable Pouch Motors Will Make Building Robots as Easy as Using Stickers
Image: Ryuma Niiyama

How easy is it to build a robot? Not very. How easy could it be to build a robot? Well, what if we try just sticking printable, inflatable actuators made of plastic onto origami (or anything else)? As Ryuma Niiyama and colleagues from the University of Tokyo and MIT have discovered, it really is that easy.

We covered these “pouch motors” (or “free-form planar soft actuators,” if you want to get technical) last August, in the context of robots with the potential to be entirely printable.

The actuators get printed on a custom-made fabrication machine that's nothing more than a 3-axis CNC holding a rod that can be heated, like a soldering iron. Moving the iron over two sheets of thermoplastic bonds them, leaving patterns of interlocking, inflatable pouches, and there’s your actuator. Hooking up a tube to the actuator with a syringe on one end allows the user to inflate and deflate the actuator, which will drag along anything that you’ve decided to stick it to.

To see how well this works in practice with people who have zero robotics experience, the researchers set up a user study:

Two 90-minutes animated origami workshops were held in a museum to study how children interact with sticky actuators. There were twenty participants at each workshop, all accompanied by their parents. The instructor demonstrated how to fold origami models and the use of sticky actuators. Then the participants were asked to make their own creations.

We observed that the combination of single-motion sticky actuators with a simple origami object could generate diverse behaviors and stories. [The figure on the right] shows animated origami objects from the workshop. As quoted from one participant, “The actuator was very interesting, and depending on the origami, there were different challenges”: the sticky actuator adds more challenges to the already complex art of folding origami. The actuation was even viewed as a new dimension to the origami art, as one participant mentioned: “I definitely enjoyed it. It added a new dimension to an art I love”.

We're also (somewhat selfishly) interested in how these pouch actuators might work in a home environment, especially if they’re scalable upwards a bit. Anyone with a 3D printer could construct a pouch motor in minutes to whatever specification they wanted: maybe you want to automatically open and close your pantry for your snack-fetching robot. Or maybe your laundry-folding robot needs some help with a stubborn sock drawer. The only potential issue is finding a source for the pressurized air needed to drive these things, but hey, there are always rockets.

[ Paper ]

Thanks Ryuma!

The Conversation (0)

How the U.S. Army Is Turning Robots Into Team Players

Engineers battle the limits of deep learning for battlefield bots

11 min read
Robot with threads near a fallen branch

RoMan, the Army Research Laboratory's robotic manipulator, considers the best way to grasp and move a tree branch at the Adelphi Laboratory Center, in Maryland.

Evan Ackerman
LightGreen

“I should probably not be standing this close," I think to myself, as the robot slowly approaches a large tree branch on the floor in front of me. It's not the size of the branch that makes me nervous—it's that the robot is operating autonomously, and that while I know what it's supposed to do, I'm not entirely sure what it will do. If everything works the way the roboticists at the U.S. Army Research Laboratory (ARL) in Adelphi, Md., expect, the robot will identify the branch, grasp it, and drag it out of the way. These folks know what they're doing, but I've spent enough time around robots that I take a small step backwards anyway.

This article is part of our special report on AI, “The Great AI Reckoning.”

The robot, named RoMan, for Robotic Manipulator, is about the size of a large lawn mower, with a tracked base that helps it handle most kinds of terrain. At the front, it has a squat torso equipped with cameras and depth sensors, as well as a pair of arms that were harvested from a prototype disaster-response robot originally developed at NASA's Jet Propulsion Laboratory for a DARPA robotics competition. RoMan's job today is roadway clearing, a multistep task that ARL wants the robot to complete as autonomously as possible. Instead of instructing the robot to grasp specific objects in specific ways and move them to specific places, the operators tell RoMan to "go clear a path." It's then up to the robot to make all the decisions necessary to achieve that objective.

Keep Reading ↓ Show less