The December 2022 issue of IEEE Spectrum is here!

Close bar

Pretty Math Problem

Computer scientists use sparse matrix values to generate beautiful images

1 min read
Pretty Math Problem

math problem matrix

Image: Yifan Hu/AT&T Labs Visualization Group
Click on image to enlarge.

You're looking at the solution to a computational fluid dynamics problem. It is one of thousands of math-based artistic renderings stored in a database maintained by computer scientists from the University of Florida, in Gainesville, and AT&T Labs Research, in Florham Park, N.J. But what you don't see makes all the difference. The matrix, or table of values, is sparse, meaning that the number of zeros it contains far outweighs the number of nonzero values. This sparsity allows for a type of data compression that lets engineers working on a simulation store the data without taking up too big a chunk of memory.

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

Why Functional Programming Should Be the Future of Software Development

It’s hard to learn, but your code will produce fewer nasty surprises

11 min read
A plate of spaghetti made from code
Shira Inbar

You’d expectthe longest and most costly phase in the lifecycle of a software product to be the initial development of the system, when all those great features are first imagined and then created. In fact, the hardest part comes later, during the maintenance phase. That’s when programmers pay the price for the shortcuts they took during development.

So why did they take shortcuts? Maybe they didn’t realize that they were cutting any corners. Only when their code was deployed and exercised by a lot of users did its hidden flaws come to light. And maybe the developers were rushed. Time-to-market pressures would almost guarantee that their software will contain more bugs than it would otherwise.

Keep Reading ↓Show less