Close

New Antennas Will Take CubeSats to Mars and Beyond

By packing big antennas into tiny satellites, JPL engineers are making space science cheap

9 min read
Illustration: John MacNeill
Illustration: John MacNeill

One morning in November 2014, Kamal Oudrhiri, a colleague of mine at the Jet Propulsion Laboratory (JPL), in Pasadena, Calif., burst into my office with an intriguing proposition. A first-of-its-kind satellite was headed for Mars. The satellite would fly alongside NASA’s InSight Mars Lander, relaying data in real time back to Earth during the lander’s critical entry, descent, and landing. “We have to achieve 8 kilobits per second, and we’re limited in terms of power. Our only hope is a large antenna,” Oudrhiri explained. “Oh, and the satellite itself will be only about the size of a briefcase.”

Nothing as diminutive as the Mars satellite—which belongs to a class called CubeSats—had ever gone farther than low Earth orbit. The antenna would be stowed during launch, occupying only about 830 cubic centimeters. Shortly thereafter, it would unfurl to a size three times as large as the satellite itself. It would have to survive the 160-million-kilometer flight to the Red Planet, including the intense vibration of launch and the radiation and extreme temperatures of deep space. How hard could that be?

Keep reading... Show less

Stay ahead of the latest trends in technology. Become an IEEE member.

This article is for IEEE members only. Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

Medal of Honor Goes to Microsensor and Systems Pioneer

The UCLA professor developed aerospace and automotive safety systems

3 min read
Photo of a man in a blue jacket in front of a brick wall.
UCLA Samueli School of Engineering

IEEE Life Fellow Asad M. Madni is the recipient of this year’s IEEE Medal of Honor. He is being recognized “for pioneering contributions to the development and commercialization of innovative sensing and systems technologies, and for distinguished research leadership.”

Keep Reading ↓ Show less

Video Friday: An Agile Year

Your weekly selection of awesome robot videos

3 min read
Video Friday: An Agile Year

Video Friday is your weekly selection of awesome robotics videos, collected by your friends at IEEE Spectrum robotics. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):

ICRA 2022: 23–27 May 2022, Philadelphia
ERF 2022: 28–30 June 2022, Rotterdam, Germany
CLAWAR 2022: 12–14 September 2022, Açores, Portugal

Let us know if you have suggestions for next week, and enjoy today's videos.

Keep Reading ↓ Show less
Rohde & Schwarz Logo
Rohde & Schwarz

In this webinar you will learn more about solutions for high test speeds and throughput as well as how to cover multiple tests with one set-up.

Speaker:

Keep Reading ↓ Show less