The February 2023 issue of IEEE Spectrum is here!

Close bar

Natural Language Processing Dates Back to Kabbalist Mystics

Long before NLP became a hot field in AI, people devised rules and machines to manipulate language

3 min read
Mystic Abraham Abulafia and his system of combining letters of the Hebrew alphabet in strange and seemingly random ways (also known as &ldquothe science of the combination of lettersrdquo;).
The 13th century mystic Abraham Abulafia got the field of natural language started with his practice of letter combinatorics.
Photo-illustration: Gluekit

This is part one of a six-part series on the history of natural language processing.

We’re in the middle of a boom time for natural language processing (NLP), the field of computer science that focuses on linguistic interactions between humans and machines. Thanks to advances in machine learning over the past decade, we’ve seen vast improvements in speech recognition and machine translation software. Language generators are now good enough to write coherent news articles, and virtual agents like Siri and Alexa are becoming part of our daily lives.

Most trace the origins of this field back to the beginning of the computer age, when Alan Turing, writing in 1950, imagined a smart machine that could interact fluently with a human via typed text on a screen. For this reason, machine-generated language is mostly understood as a digital phenomenon—and a central goal of artificial intelligence (AI) research.

This six-part series will challenge that common understanding of NLP. In fact, attempts to design formal rules and machines that can analyze, process, and generate language go back hundreds of years.

Attempts to design formal rules and machines that can analyze, process, and generate language go back hundreds of years.

While specific technologies have changed over time, the basic idea of treating language as a material that can be artificially manipulated by rule-based systems has been pursued by many people in many cultures and for many different reasons. These historical experiments reveal the promise and perils of attempting to simulate human language in non-human ways—and they hold lessons for today’s practitioners of cutting-edge NLP techniques. 

The story begins in medieval Spain. In the late 1200s, a Jewish mystic by the name of Abraham Abulafia sat down at a table in his small house in Barcelona, picked up a quill, dipped it in ink, and began combining the letters of the Hebrew alphabet in strange and seemingly random ways. Aleph with Bet, Bet with Gimmel, Gimmel with Aleph and Bet, and so on.

Abulafia called this practice “the science of the combination of letters.” He wasn’t actually combining letters at random; instead he was carefully following a secret set of rules that he had devised while studying an ancient Kabbalistic text called the Sefer Yetsirah. This book describes how God created “all that is formed and all that is spoken” by combining Hebrew letters according to sacred formulas. In one section, God exhausts all possible two-letter combinations of the 22 Hebrew letters.

By studying the Sefer Yetsirah, Abulafia gained the insight that linguistic symbols can be manipulated with formal rules in order to create new, interesting, insightful sentences. To this end, he spent months generating thousands of combinations of the 22 letters of the Hebrew alphabet and eventually emerged with a series of books that he claimed were endowed with prophetic wisdom.

For Abulafia, generating language according to divine rules offered insight into the sacred and the unknown, or as he put it, allowed him to “grasp things which by human tradition or by thyself thou would not be able to know.”

Combining letters to generate language allows thou to “grasp things which by human tradition or by thyself thou would not be able to know.”

But other Jewish scholars considered this rudimentary language generation a dangerous act that bordered on the profane. The Talmud tells stories of rabbis who, by the magical act of permuting language according to the formulas set out in the Sefer Yetsirah, created artificial creatures called golems. In these tales, rabbis manipulated the letters of the Hebrew alphabet to replicate God’s act of creation, using the sacred formulas to imbue inanimate objects with life.

In some of these myths, the rabbis used this skill for practical reasons, to make animals to eat when hungry or servants to help them with domestic duties. But many of these golem stories end badly. In one particularly well-known fable, Judah Loew ben Bezalel, the 16th century rabbi of Prague, used the sacred practice of letter combinatorics to conjure a golem to protect the Jewish community from antisemitic attacks, only to see the golem turn violently on him instead.

This “science of the combination of letters” was a rudimentary form of natural language processing, as it involved combining letters of the Hebrew alphabet according to specific rules. For Kabbalists, it was a double-edged sword: a way to access new forms of knowledge and wisdom, but also an inherently dangerous practice that could bring about unintended consequences.

This tension reappears throughout the long history of language processing, and still echoes in discussions about the most cutting-edge NLP technology of our digital era.

This is the first installment of a six-part series on the history of natural language processing. Come back next Monday for part two, which brings us to the Enlightenment, when Gottfried Wilhelm Leibniz dreamed of a machine that could calculate ideas

You can also check out our prior series on the untold history of AI

The Conversation (0)

Will AI Steal Submarines’ Stealth?

Better detection will make the oceans transparent—and perhaps doom mutually assured destruction

11 min read
A photo of a submarine in the water under a partly cloudy sky.

The Virginia-class fast attack submarine USS Virginia cruises through the Mediterranean in 2010. Back then, it could effectively disappear just by diving.

U.S. Navy

Submarines are valued primarily for their ability to hide. The assurance that submarines would likely survive the first missile strike in a nuclear war and thus be able to respond by launching missiles in a second strike is key to the strategy of deterrence known as mutually assured destruction. Any new technology that might render the oceans effectively transparent, making it trivial to spot lurking submarines, could thus undermine the peace of the world. For nearly a century, naval engineers have striven to develop ever-faster, ever-quieter submarines. But they have worked just as hard at advancing a wide array of radar, sonar, and other technologies designed to detect, target, and eliminate enemy submarines.

The balance seemed to turn with the emergence of nuclear-powered submarines in the early 1960s. In a 2015 study for the Center for Strategic and Budgetary Assessment, Bryan Clark, a naval specialist now at the Hudson Institute, noted that the ability of these boats to remain submerged for long periods of time made them “nearly impossible to find with radar and active sonar.” But even these stealthy submarines produce subtle, very-low-frequency noises that can be picked up from far away by networks of acoustic hydrophone arrays mounted to the seafloor.

Keep Reading ↓Show less
{"imageShortcodeIds":["30133857"]}