NASA's Robonaut-2 Will Go to Space This Year

First trip for human-like robot will be on last shuttle mission

1 min read
NASA's Robonaut-2 Will Go to Space This Year

NASA's Robonaut-2 (R2), a semi-humanoid robot co-developed with GM, will rocket to space on the shuttle Discovery later this year as part of NASA's final space shuttle mission. It will be the first human-like robot NASA has sent to space.

R2's dexterous hands give it the strength and flexibility to manipulate tools just like humans do, making it an ideal helper for humans in space.

Once it gets to space, R2 will be confined to the inside of the International Space Station (ISS) while astronauts test its ability to operate in zero-g. It may eventually get space-certified like its non-humanoid relative, Dextre, a two-armed dexterous manipulator developed by the Canadian Space Agency. Dextre currently assists in tasks outside the space station.

NASA engineers have less than 6 months to get R2 ready for flight, including vibration, vacuum, and radiation tests. Watch this video to see how they'll do it. 

[youtube https://www.youtube.com/v/lY-SJyS18lA&hl=en_US&fs=1& expand=1]

R2 will launch on STS-133, scheduled for September, and will remain on the ISS.

Photo and video courtesy of NASA.

The Conversation (0)
Two men fix metal rods to a gold-foiled satellite component in a warehouse/clean room environment

Technicians at Northrop Grumman Aerospace Systems facilities in Redondo Beach, Calif., work on a mockup of the JWST spacecraft bus—home of the observatory’s power, flight, data, and communications systems.

NASA

For a deep dive into the engineering behind the James Webb Space Telescope, see our collection of posts here.

When the James Webb Space Telescope (JWST) reveals its first images on 12 July, they will be the by-product of carefully crafted mirrors and scientific instruments. But all of its data-collecting prowess would be moot without the spacecraft’s communications subsystem.

The Webb’s comms aren’t flashy. Rather, the data and communication systems are designed to be incredibly, unquestionably dependable and reliable. And while some aspects of them are relatively new—it’s the first mission to use Ka-band frequencies for such high data rates so far from Earth, for example—above all else, JWST’s comms provide the foundation upon which JWST’s scientific endeavors sit.

Keep Reading ↓Show less
{"imageShortcodeIds":[]}