The December 2022 issue of IEEE Spectrum is here!

Close bar

Nanotransistors Stamped Out

Nanoimprint lithography proves its worth, making transistors for the first time

3 min read

12 November 2003�Each step along the road to making smaller and smaller circuits using photolithography requires an ever-more�arduous reworking of the manufacturing process. New light sources must be invented, new optical materials purified, new photochemicals developed. But engineers led by IEEE Fellow Stephen Chou at Princeton University in New Jersey say their way could do the job for the foreseeable future without so much as polishing a new lens.

Instead of exposing a circuit�s pattern onto a blank wafer using light, nanoimprint lithography literally stamps out the circuit. Previously used only in making simple non-electronic structures such as optical gratings, the technique, as Chou and his colleague Wei Zhang have shown, can make electronics by nanoimprinting multiple transistors with features two-thirds the size of those found on even the most advanced commercial chips.

Keep Reading ↓Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

Are You Ready for Workplace Brain Scanning?

Extracting and using brain data will make workers happier and more productive, backers say

11 min read
Vertical
A photo collage showing a man wearing a eeg headset while looking at a computer screen.
Nadia Radic
DarkGray

Get ready: Neurotechnology is coming to the workplace. Neural sensors are now reliable and affordable enough to support commercial pilot projects that extract productivity-enhancing data from workers’ brains. These projects aren’t confined to specialized workplaces; they’re also happening in offices, factories, farms, and airports. The companies and people behind these neurotech devices are certain that they will improve our lives. But there are serious questions about whether work should be organized around certain functions of the brain, rather than the person as a whole.

To be clear, the kind of neurotech that’s currently available is nowhere close to reading minds. Sensors detect electrical activity across different areas of the brain, and the patterns in that activity can be broadly correlated with different feelings or physiological responses, such as stress, focus, or a reaction to external stimuli. These data can be exploited to make workers more efficient—and, proponents of the technology say, to make them happier. Two of the most interesting innovators in this field are the Israel-based startup InnerEye, which aims to give workers superhuman abilities, and Emotiv, a Silicon Valley neurotech company that’s bringing a brain-tracking wearable to office workers, including those working remotely.

Keep Reading ↓Show less
{"imageShortcodeIds":[]}