Nanoislands Simplify Structure of Resistive Memory Devices

Self-assembling nanoislands eliminate need for a selector device in resisitive memory devices

2 min read
Nanoislands Simplify Structure of Resistive Memory Devices

The heralding of the memristor, or resistive memory, and the long-anticipated demise of flash memory have both been tracking on opposite trajectories with resistive memory expected to displace flash ever since the memristor was first discovered by Stanley Williams' group at Hewlett Packard in 2008.

The memristor has been on a rapid development track ever since and has been promised to be commercially available as early as 2014, enabling 10 times greater embedded memory for mobile devices than currently available.

The obsolescence of flash memory at the hands of the latest nanotechnology has been predicted for longer than the commercial introduction of the memristor. But just at the moment it appears it’s going to reach its limits in storage capacity along comes a new way to push its capabilities to new heights, sometimes thanks to a nanomaterial like graphene.

Will resistive memory displace flash memory in mobile device applications? Researchers at the University of California, Riverside Bourns College of Engineering, believe they have developed a new structure for resistive memory devices that could make the manufacturing of resistive memory easier and possibly ring the death knell for flash memory in mobile devices.

The research, which was published in the journal Scientific Reports (“Multimode Resistive Switching in Single ZnO Nanoisland System”), examined the typical structure of resistive memory devices, which involves a metal-oxide-metal structure combined with a selector device. The UC Riverside team reimagined that structure and demonstrated that one made from self-assembly zinc oxide nanoislands on a silicon substrate. This structure eliminates the need for a selector device, which is usually a diode.

“This is a significant step as the electronics industry is considering wide-scale adoption of resistive memory as an alternative for flash memory,” said Jianlin Liu, a professor of electrical engineering at UC Riverside, in a press release. “It really simplifies the process and lowers the fabrication cost.”

While this structure will not likely be incorporated into the initial commercially available resistive memory devices, it could possibly provide a design for next generation devices.

Photo: The University of California, Riverside

The Conversation (0)
An image of stacked squares with yellow flat bars through them.
Emily Cooper
Green

Perhaps the most far-reaching technological achievement over the last 50 years has been the steady march toward ever smaller transistors, fitting them more tightly together, and reducing their power consumption. And yet, ever since the two of us started our careers at Intel more than 20 years ago, we’ve been hearing the alarms that the descent into the infinitesimal was about to end. Yet year after year, brilliant new innovations continue to propel the semiconductor industry further.

Along this journey, we engineers had to change the transistor’s architecture as we continued to scale down area and power consumption while boosting performance. The “planar” transistor designs that took us through the last half of the 20th century gave way to 3D fin-shaped devices by the first half of the 2010s. Now, these too have an end date in sight, with a new gate-all-around (GAA) structure rolling into production soon. But we have to look even further ahead because our ability to scale down even this new transistor architecture, which we call RibbonFET, has its limits.

Keep Reading ↓Show less
{"imageShortcodeIds":[]}