Motion-Planning Chip Speeds Robots

A programmable chip turns a robot’s long pauses into quick action

6 min read
Photo: Duke Robotics
Jaco robot arm doing motion planning with custom FPGA processor
Photo: Duke Robotics

If you’ve seen a robot manipulation demo, you’ve almost certainly noticed that the robot tends to spend a lot of time looking like it’s not doing anything. It’s tempting to say that the robot is “thinking” when this happens, and that might even be mostly correct: Odds are that you’re waiting for some motion-planning algorithm to figure out how to get the robot’s arm and gripper to do what it’s supposed to do without running into anything. This motion-planning process is one of the most important skills a robot can have, and it’s also one of the most time consuming.

Researchers at Duke University, in Durham, N.C., have found a way to speed up motion planning by three orders of magnitude while using one-twentieth the power. Their solution is a custom processor that can perform the most time-consuming part of the job—checking for all potential collisions across the robot’s entire range of motion—with unprecedented efficiency.

Keep Reading ↓Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

The Bionic-Hand Arms Race

The prosthetics industry is too focused on high-tech limbs that are complicated, costly, and often impractical

12 min read
Horizontal
A photograph of a young woman with brown eyes and neck length hair dyed rose gold sits at a white table. In one hand she holds a carbon fiber robotic arm and hand. Her other arm ends near her elbow. Her short sleeve shirt has a pattern on it of illustrated hands.

The author, Britt Young, holding her Ottobock bebionic bionic arm.

Gabriela Hasbun. Makeup: Maria Nguyen for MAC cosmetics; Hair: Joan Laqui for Living Proof
DarkGray

In Jules Verne’s 1865 novel From the Earth to the Moon, members of the fictitious Baltimore Gun Club, all disabled Civil War veterans, restlessly search for a new enemy to conquer. They had spent the war innovating new, deadlier weaponry. By the war’s end, with “not quite one arm between four persons, and exactly two legs between six,” these self-taught amputee-weaponsmiths decide to repurpose their skills toward a new projectile: a rocket ship.

The story of the Baltimore Gun Club propelling themselves to the moon is about the extraordinary masculine power of the veteran, who doesn’t simply “overcome” his disability; he derives power and ambition from it. Their “crutches, wooden legs, artificial arms, steel hooks, caoutchouc [rubber] jaws, silver craniums [and] platinum noses” don’t play leading roles in their personalities—they are merely tools on their bodies. These piecemeal men are unlikely crusaders of invention with an even more unlikely mission. And yet who better to design the next great leap in technology than men remade by technology themselves?

Keep Reading ↓Show less