The July 2022 issue of IEEE Spectrum is here!

Close bar

Modular Robots

When a task or terrain varies, reconfigurable robots can change their shape to get the job done

10 min read
Modular Robots

chain of simple hinge joints

Photos: Robert Schlatter
Xerox PARC's multimodule robot, PolyBot, can move in several ways, starting as a rolling tread [first frame]. With the connectors between two modules released, it moves in a snake-like manner [second frame]. With its end modules docked to its center module, it forms a figure-8 [not shown]. Breaking the intermodule connections at the ends of the figure-8 [third frame] leads to a four-legged spider configuration that walks like a person on crutches [last frame]. Click on the image for the full illustration view.

Robots out on the factory floor pretty much know what's coming. Constrained as they are by programming and geometry, their world is just an assembly line. But for robots operating outdoors, away from civilization, both mission and geography are unpredictable. Here, robots with the ability to change their shape could be of great value, since they could adapt to constantly varying tasks and environments. Modular reconfigurable robots—experimental systems made by interconnecting multiple, simple, similar units--can perform such shape shifting.

Keep reading...Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

Autonomous Drones Challenge Human Champions in First “Fair” Race

Vision-based AI drones outfly world-class human pilots

4 min read
Two drones, one red and one blue, fly through gates in a drone racing course inside an aircraft hangar

Watching robots operate with speed and precision is always impressive, if not, at this point, always surprising. Sophisticated sensors and fast computing means that a powerful and agile robot, like a drone, that knows exactly where it is and exactly where it’s going can reliably move in highly dynamic ways. This is not to say that it’s easy for the drone, but if you’ve got a nice external localization system, a powerful off-board computer, and a talented team of roboticists, you can perform some amazingly agile high-speed maneuvers that most humans could never hope to match.

I say “most” humans, because there are some exceptionally talented humans who are, in fact, able to achieve a level of performance similar to that of even the fastest and most agile drones. The sport of FPV (first-person view) drone racing tests what’s possible with absurdly powerful drones in the hands of humans who must navigate complex courses with speed and precision that seems like it shouldn’t be possible, all while relying solely on a video feed sent from a camera on the front of the drone to the pilot’s VR headset. It’s honestly astonishing to watch.

A year ago, autonomous racing quadrotors from Davide Scaramuzza’s Robotics and Perception Group at the University of Zurich (UZH) proved that they could beat the world’s fastest humans in a drone race. However, the drones relied on a motion-capture system to provide very high resolution position information in real time, along with a computer sending control information from the safety and comfort of a nearby desk, which doesn’t really seem like a fair competition.

Earlier this month, a trio of champion drone racers traveled to Zurich for a rematch, but this time, the race would be fair: no motion-capture system. Nothing off-board. Just drones and humans using their own vision systems and their own computers (or brains) to fly around a drone racing track as fast as possible.

Keep Reading ↓Show less

Inside the Universe Machine: The Webb Space Telescope’s Trailblazing Optics

As NASA’s newest Big Science project opens its eyes, IEEESpectrum reflects on JWST’s groundbreaking engineering

9 min read
Fourteen technicians in clean-room suits guide the hoisting of a honeycombed, hexagon-mirrored telescope inside a giant cleanroom construction space

The James Webb Space Telescope’s 18-segment gold mirror enables it to see a penny 40 kilometers away, or a football 550 kilometers away.

NASA/Desiree Stover

“Build something that will absolutely, positively work.” This was the mandate from NASA for designing and building the James Webb Space Telescope—at 6.5 meters wide the largest space telescope in history. Last December, JWST launched famously and successfully to its observing station out beyond the moon. And now according to NASA, as soon as next week, the JWST will at long last begin releasing scientific images and data.

Mark Kahan, on JWST’s product integrity team, recalls NASA’s engineering challenge as a call to arms for a worldwide team of thousands that set out to create one of the most ambitious scientific instruments in human history. Kahan—chief electro-optical systems engineer at Mountain View, Calif.–based Synopsys—and many others in JWST’s “pit crew” (as he calls the team) drew hard lessons from three decades ago, having helped repair another world-class space telescope with a debilitating case of flawed optics. Of course the Hubble Space Telescope is in low Earth orbit, and so a special space-shuttle mission to install corrective optics ( as happened in 1993) was entirely possible.

Keep Reading ↓Show less

Automating Road Maintenance With LiDAR Technology

Team from SICK’s TiM$10K Challenge creates system to automate road maintenance

4 min read

Developed by a team of students at Worcester Polytechnic Institute as part of SICK's TiM$10K Challenge, their ROADGNAR system uses LiDAR to collect detailed data on the surface of a roadway.

SICK

This is a sponsored article brought to you by SICK Inc.

From advanced manufacturing to automated vehicles, engineers are using LiDAR to change the world as we know it. For the second year, students from across the country submitted projects to SICK's annual TiM$10K Challenge.

Keep Reading ↓Show less