The August 2022 issue of IEEE Spectrum is here!

Close bar

March of the SandBots

A new generation of legged robots will navigate the world’s trickiest terrain

12 min read
Photo of Sandbot as it trundles down a track filled with poppy seeds.
Photo : Yvonne Boyd

A zebra-tailed lizard stands on a bed of tiny glass beads and shifts its weight. The beads slip underfoot, and the mottled beige creature stretches its spindly toes to get a better purchase. Suddenly it breaks into a run, blazing across the granular surface with stupendous agility, its toes stretching out flat as they hit the beads, its feet whipping back and forth in a blur. Each side of the lizard’s body stretches and then coils in turn as the reptile darts ahead at several meters per second.

Scooped up a year ago in California’s Mojave Desert and transplanted to a lab at Georgia Tech, the lizard holds our interest because of its truly peculiar feet. Those long, bony toes allow the reptile to navigate over sand, rocks, and the many other types of terrain it may face in the desert. In the lab, the bed of glass beads stands in for desert sand, and by blowing air through it or packing it down, we can make the ground looser or more solid. We then study how the lizard copes with the changes.

Keep reading...Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

Artificial Synapses 10,000x Faster Than Real Thing

New protonic programmable resistors may help speed learning in deep neural networks

3 min read
Conceptual illustration shows a brain shape made of circuits on a multilayered chip structure.
Ella Maru Studio and Murat Onen

New artificial versions of the neurons and synapses in the human brain are up to 1,000 times smaller than neurons and at least 10,000 times faster than biological synapses, a study now finds.

These new devices may help improve the speed at which the increasingly common and powerful artificial intelligence systems known as deep neural networks learn, researchers say.

Keep Reading ↓Show less

Amazon to Acquire iRobot F​or $1.7 Billion

The deal will give the e-retail behemoth even more access to our homes

4 min read
A photo of an iRobot Roomba with an Amazon logo digitally added to it
Photo-illustration: iStockphoto/Amazon/IEEE Spectrum

This morning, Amazon and iRobot announced “a definitive merger agreement under which Amazon will acquire iRobot” for US $1.7 billion. The announcement was a surprise, to put it mildly, and we’ve barely had a chance to digest the news. But taking a look at what’s already known can still yield initial (if incomplete) answers as to why Amazon and iRobot want to team up—and whether the merger seems like a good idea.

Keep Reading ↓Show less

Automating Road Maintenance With LiDAR Technology

Team from SICK’s TiM$10K Challenge creates system to automate road maintenance

4 min read

Developed by a team of students at Worcester Polytechnic Institute as part of SICK's TiM$10K Challenge, their ROADGNAR system uses LiDAR to collect detailed data on the surface of a roadway.


This is a sponsored article brought to you by SICK Inc.

From advanced manufacturing to automated vehicles, engineers are using LiDAR to change the world as we know it. For the second year, students from across the country submitted projects to SICK's annual TiM$10K Challenge.

Keep Reading ↓Show less