Less Fire, More Power: The Secret to Safer Lithium-Ion Batteries

Curbing needlelike dendrites that short out cells will make batteries less likely to go up in flames

8 min read
Image showing dendrites growing on the surface of the electrode
Image: Brookhaven National Laboratory/SCIENCE SOURCE

Image showing dendrites growing out of the anode of a lithium-ion cell Root and Branch: Crystalline lithium-metal structures grow out of the anode of a lithium-ion cell in a branching pattern, thus their name, dendrites (from the Greek  dendron meaning “tree”). If they grow too long, they can short out the cell. Image: Brookhaven National Laboratory/Science Source

Lithium-ion batteries have made headlines for the wrong reason: as a fire hazard. Just this past May, three apparent battery fires in Tesla cars were reported in the United States and Switzerland. In the United States alone, a fire in a lithium-ion battery grounds a flight every 10 days on average, according to the Federal Aviation Administration. And the same problem afflicts electronic cigarettes, which have been blowing up in people’s faces sporadically.

Keep reading... Show less

Stay ahead of the latest trends in technology. Become an IEEE member.

This article is for IEEE members only. Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

Damaged Hearts Next in Line for Powerful mRNA Therapies

COVID-19 vaccine technology now points toward repairing ravages of heart attacks

3 min read
Light and dark pink sections of a microscopic view of heart tissue

Light micrograph of a section through the endocardium, the membrane that lines the heart (across top), following a heart attack. Necrotic (dead) muscle fibres (across bottom) have stained a deeper red, but their nuclei no longer stain.

CNRI/Science Source

The messenger RNA COVID-19 vaccines, including ones made by Moderna and Pfizer, notched some famous successes and pioneered the use of mRNA technology along the way. Now, scientists are applying testing similar technologies as treatments for a variety of conditions, including heart injury. New research presented in April at the Frontiers in CardioVascular Biomedicine 2022 conference shows that mRNA can help heart cells regenerate after being damaged from a heart attack—and has the potential to be an effective therapy. Other recent research treating cardiac injury using similar approaches has also shown promise. Should these treatments be effective in people, they would be among the first to heal damage after a heart attack, which current treatments for heart attack don't really do.

“A real solution is not provided to the patient,” said Dr. Maria Clara Labonia, a medical doctor and Ph.D student at the University of Utrecht in the Netherlands who is the lead author of the study. “So many aims are towards new therapeutic strategies.”

Keep Reading ↓ Show less

Video Friday: Drone in a Cage

Your weekly selection of awesome robot videos

3 min read
A drone inside of a protective geometric cage flies through a dark rain

Video Friday is your weekly selection of awesome robotics videos, collected by your friends at IEEE Spectrum robotics. We also post a weekly calendar of upcoming robotics events for the next few months. Please send us your events for inclusion.

ICRA 2022: 23 May–27 May 2022, PHILADELPHIA
IEEE ARSO 2022: 28 May–30 May 2022, LONG BEACH, CALIF.
RSS 2022: 21 June–1 July 2022, NEW YORK CITY
ERF 2022: 28 June–30 June 2022, ROTTERDAM, NETHERLANDS
RoboCup 2022: 11 July–17 July 2022, BANGKOK
IEEE CASE 2022: 20 August–24 August 2022, MEXICO CITY
CLAWAR 2022: 12 September–14 September 2022, AZORES, PORTUGAL

Enjoy today’s videos!

Keep Reading ↓ Show less

Why Battery Energy Storage Is Moving to Higher DC Voltages

Download this free whitepaper to learn how battery energy storage up to 1500 VDC can deliver power efficiencies and cost reductions

1 min read

The explosive growth of the battery energy storage industry has created a need for higher DC voltages in utility-scale applications.

Download this free whitepaper and learn how you can achieve a smooth transfer of power, efficiencies and cost reductions with battery energy storage system components up to1500 VDC.