The July 2022 issue of IEEE Spectrum is here!

Close bar

It’s Big and Long-Lived, and It Won’t Catch Fire: The Vanadium Redox-⁠Flow Battery

Move over, lithium ion: Vanadium flow batteries finally become competitive for grid-scale energy storage

9 min read
Illustration demonstrating battery flow.
Illustration: James Provost

/image/Mjk3MDg2NQ.jpegGo Big: This factory produces vanadium redox-flow batteries destined for the world’s largest battery site: a 200-megawatt, 800-megawatt-hour storage station in China’s Liaoning province.Photo: Rongke Power

The factory sprawls over an area larger than 20 soccer fields. Inside, it’s brightly lit and filled with humming machinery, a mammoth futuristic manufactory. Robot arms grab components from bins and place each part with precision, while conveyor belts move the assembled pieces smoothly down production lines. Finished products enter testing stations for quality checks before being packed for shipping.

Keep reading...Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

Vanadium Anodes for Faster-charging, Longer-lived Batteries

Startup TyFast aims for 3-minute charging, 20,000-cycle life

3 min read
A foil rectangle labelled Tyfast, with two silver squares coming out of the top.

Startup Tyfast is making batteries based on a new anode material that allow it to charge in minutes and last for several thousands of charge cycles

Tyfast

To fulfill the vision of EVs that travel a thousand miles or phones that run for days on a single charge, most battery developers are racing to make batteries that can pack twice the energy in the same weight.

Not startup Tyfast, which is “approaching next-generation battery development in a counter-current direction,” says GJ la O’, CEO and cofounder of the 2021 spinoff from the University of California, San Diego.

Keep Reading ↓Show less

IEEE STEM Activity Kits Are In Demand at 150 U.S. Public Libraries

Kids can build robots, write code, and design video games

4 min read
Two boys and one girl standing in front of a computer monitor. On the left side of the monitor is a backpack containing a science activity kit.

These youngsters are checking out one of their local library’s IEEE-funded science activity kits.

John Zulaski

More than 150 public libraries throughout the central United States now lend out activity kits that let children explore just about any aspect of science, technology, engineering, and mathematics. The kids can check them out just like they would a book. The kits teach youngsters what engineers do, as well as how to code, build robots, design video games, and create animations.

The collections have been made possible by the IEEE Region 4 Science Kits for Public Libraries program with funding from Region 4 members and corporate sponsors. The SKPL program is the brainchild of IEEE Life Senior Member John A. Zulaski, the chair of the SKPL committee.

Keep Reading ↓Show less

A Multiphysics Approach to Designing Fuel Cells for Electric Vehicles

White paper on fuel cell modeling and simulation

1 min read
Comsol Logo
Comsol

Fuel cell electric vehicles (FCEVs) often reach higher energy density and exhibit greater efficiency than battery EVs; however, they also have high manufacturing costs, limited service life, and relatively low power density.

Modeling and simulation can improve fuel cell design and optimize EV performance. Learn more in this white paper.